本篇内容主要讲解“Scipy稀疏矩阵bsr_array如何使用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Scipy稀疏矩阵bsr_array如何使用”吧!
bsr,即Block Sparse Row,bsr_array即块稀疏行矩阵,顾名思义就是将稀疏矩阵分割成一个个非0的子块,然后对这些子块进行存储。通过输入维度,可以创建一个空的bsr数组,但bsr格式并不可见,需要通过toarray转为数组,才能一窥全貌。
from scipy.sparse import bsr_array import numpy as np import sys bsr = bsr_array((100, 200), dtype=np.int8) sys.getsizeof(bsr) # 48 bsr_arr = bsr.toarray() # 转为数组 sys.getsizeof(bsr_arr) # 20120
egtsizeof可查看数据占用的内存,其中bsr占用48byte,转为数组之后占据20k,这就是稀疏矩阵存在的价值。
当然,全零的数组就直接叫全零数组得了,直接存个行列数比bsr还省事儿,接下来构造一个矩阵
from numpy.random import randint, rand tmp = np.zeros([200,200]) for i in range(30): x, y = randint(195, size=(2)) tmp[x:x+5, y:y+5]=rand(5,5) print(tmp.size) # 40000 bsr = bsr_array(tmp, blocksize=(5,5)) print(bsr.data.size) # 2850 print(bsr.indptr.size) # 41 print(bsr.indices.size) # 114 print(tmp.size)
bsr.data是bsr中存放的矩阵块;bsr.indices为这些矩阵块对应的列号数组;bsr.indptr为索引的行分割数组;这些零零碎碎加在一起也只有3005个数,和40k的tmp相比,可以说压缩效率非常高了。
通过data, indptr和indices,可以将bsr复原为矩阵。首先,列号和数据是一一对应的;其次indptr对索引和数据按行分割。在本例中,indptr的值为0, 2, 6, 8…,则data[0:2]存放在第0行,对应的列号为indices[0:2];data[2:6]存放在第1行,对应的列号为indices[2:6],以此类推。
bsr_array共有5种初始化方案:
bsr_array(D) D是一个稀疏数组或2 × D 2\times D2×D数组
bsr_array(S) S是另一种稀疏数组
bsr_array((M, N),dtype) 创建一个shape为( M , N ) (M, N)(M,N)的空数组,dtype为数据类型
bsr_array((data, ij)) ij是坐标数组,可分解为i,j=ij,data是数据数组,设新矩阵为a,则a[i[k], j[k]] = data[k]
bsr_array((data, indices, indptr))
前四种方法均有参数blocksize,为块尺寸;后两种方法均有参数shape,为稀疏矩阵的维度。
从原理上来说,通过data, indices, indptr来创建的bsr数组,属于"原生"的bsr数组,其创建规则就是前文提到的复原规则。
稀疏数组在计算上并不便捷,所以bsr_array中内置了下列函数,可以高效地完成计算。
函数 | expm1 , log1p , sqrt , pow , sign |
三角函数 | sin , tan , arcsin , arctan , deg2rad , rad2deg |
双曲函数 | sinh , tanh , arcsinh , arctanh |
索引 | getcol , getrow , nonzero , argmax , argmin , max , min |
舍入 | ceil , floor , trunc |
变换 | conj , conjugate , getH |
统计 | count_nonzero , getnnz , mean , sum |
矩阵 | diagonal , trace |
获取属性 | get_shape , getformat |
计算比较 | multiply , dot , maximum , minimum |
转换 | asformat , asfptype , astype , toarray , todense |
转换 | tobsr , tocoo , tocsc , tocsr , todia , todok , tolil |
更改维度 | set_shape , reshape , resize , transpose |
排序 | sort_indices , sorted_indices |
移除元素 | eliminate_zeros , prune , sum_duplicates |
其他 | copy , check_format , getmaxprint , rint , setdiag |
到此,相信大家对“Scipy稀疏矩阵bsr_array如何使用”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。