这篇文章主要介绍“Pandas.DataFrame重置Series的索引index”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Pandas.DataFrame重置Series的索引index”文章能帮助大家解决问题。
如果使用reset_index()方法,则可以将pandas.DataFrame,pandas.Series的索引索引(行名称,行标签)重新分配为从0开始的序列号(行号)。
如果将行号用作索引,则通过排序更改行的顺序或删除行并得到缺少的号码时,重新索引会更容易。
当行名(行标签)用作索引时,它也可用于删除当前索引或恢复数据列。您可以使用set_index()和reset_index()将索引更改(重置)到另一列。
将描述以下内容。
使用reset_index()将索引重新分配给序列号
基本用法
删除原始索引:参数drop
更改原始对象:参数inplace
使用reset_index()和set_index()将索引更改为另一列(重置)
以下面的数据为例。
import pandas as pd
df = pd.read_csv('./data/21/sample_pandas_normal.csv')
print(df)
# name age state point
# 0 Alice 24 NY 64
# 1 Bob 42 CA 92
# 2 Charlie 18 CA 70
# 3 Dave 68 TX 70
# 4 Ellen 24 CA 88
# 5 Frank 30 NY 57
该示例为pandas.DataFrame,但pandas.Series也具有reset_index()。两个参数的用法相同。
使用sort_values()对行进行排序以进行说明。有关排序的详细信息,请参见以下文章。
pandas.DataFrame,Series排序(sort_values,sort_index)
df.sort_values('state', inplace=True)
print(df)
# name age state point
# 1 Bob 42 CA 92
# 2 Charlie 18 CA 70
# 4 Ellen 24 CA 88
# 0 Alice 24 NY 64
# 5 Frank 30 NY 57
# 3 Dave 68 TX 70
由于索引已经分散,因此将它们重新分配给从0开始的连续数字。
如果在不指定任何参数的情况下使用reset_index(),则序列号将成为新索引,而原始索引将保留为新列。
df_r = df.reset_index()
print(df_r)
# index name age state point
# 0 1 Bob 42 CA 92
# 1 2 Charlie 18 CA 70
# 2 4 Ellen 24 CA 88
# 3 0 Alice 24 NY 64
# 4 5 Frank 30 NY 57
# 5 3 Dave 68 TX 70
如果参数drop为True,则原始索引将被删除并且不会保留。
df_r = df.reset_index(drop=True)
print(df_r)
# name age state point
# 0 Bob 42 CA 92
# 1 Charlie 18 CA 70
# 2 Ellen 24 CA 88
# 3 Alice 24 NY 64
# 4 Frank 30 NY 57
# 5 Dave 68 TX 70
默认情况下,原始对象不会更改,并且会返回一个新对象,但是如果inplace参数为True,则会更改原始对象。
df.reset_index(inplace=True, drop=True)
print(df)
# name age state point
# 0 Bob 42 CA 92
# 1 Charlie 18 CA 70
# 2 Ellen 24 CA 88
# 3 Alice 24 NY 64
# 4 Frank 30 NY 57
# 5 Dave 68 TX 70
如果将行名设置为索引而不是数字。
df = pd.read_csv('./data/21/sample_pandas_normal.csv', index_col=0)
print(df)
# age state point
# name
# Alice 24 NY 64
# Bob 42 CA 92
# Charlie 18 CA 70
# Dave 68 TX 70
# Ellen 24 CA 88
# Frank 30 NY 57
如果使用reset_index()方法,则将序列号设置为索引,并将原始索引添加到data列。
df_r = df.reset_index()
print(df_r)
# name age state point
# 0 Alice 24 NY 64
# 1 Bob 42 CA 92
# 2 Charlie 18 CA 70
# 3 Dave 68 TX 70
# 4 Ellen 24 CA 88
# 5 Frank 30 NY 57
如果将set_index()照原样应用于原始DataFrame,则会删除原始索引。
df_s = df.set_index('state')
print(df_s)
# age point
# state
# NY 24 64
# CA 42 92
# CA 18 70
# TX 68 70
# CA 24 88
# NY 30 57
如果要将原始索引保留为数据字符串,则可以在reset_index()之后使用set_index()。
df_rs = df.reset_index().set_index('state')
print(df_rs)
# name age point
# state
# NY Alice 24 64
# CA Bob 42 92
# CA Charlie 18 70
# TX Dave 68 70
# CA Ellen 24 88
# NY Frank 30 57
注意,为方便起见,在此示例中将具有重叠值的列设置为索引,但是如果索引值不重叠(每个值都是唯一的),则更容易选择数据。
关于“Pandas.DataFrame重置Series的索引index”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注亿速云行业资讯频道,小编每天都会为大家更新不同的知识点。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。