温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

C++中内存池的原理及实现方法是什么

发布时间:2023-03-01 11:44:23 来源:亿速云 阅读:132 作者:iii 栏目:开发技术

这篇文章主要讲解了“C++中内存池的原理及实现方法是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C++中内存池的原理及实现方法是什么”吧!

为什么要用内存池

C++程序默认的内存管理(new,delete,malloc,free)会频繁地在堆上分配和释放内存,导致性能的损失,产生大量的内存碎片,降低内存的利用率。默认的内存管理因为被设计的比较通用,所以在性能上并不能做到极致。

因此,很多时候需要根据业务需求设计专用内存管理器,便于针对特定数据结构和使用场合的内存管理,比如:内存池。

内存池原理

内存池的思想是,在真正使用内存之前,预先申请分配一定数量、大小预设的内存块留作备用。当有新的内存需求时,就从内存池中分出一部分内存块,若内存块不够再继续申请新的内存,当内存释放后就回归到内存块留作后续的复用,使得内存使用效率得到提升,一般也不会产生不可控制的内存碎片。

内存池设计

算法原理:

1.预申请一个内存区chunk,将内存中按照对象大小划分成多个内存块block

2.维持一个空闲内存块链表,通过指针相连,标记头指针为第一个空闲块

3.每次新申请一个对象的空间,则将该内存块从空闲链表中去除,更新空闲链表头指针

4.每次释放一个对象的空间,则重新将该内存块加到空闲链表头

5.如果一个内存区占满了,则新开辟一个内存区,维持一个内存区的链表,同指针相连,头指针指向最新的内存区,新的内存块从该区内重新划分和申请

如图所示:

C++中内存池的原理及实现方法是什么

C++中内存池的原理及实现方法是什么

C++中内存池的原理及实现方法是什么

内存池实现

memory_pool.hpp

#ifndef _MEMORY_POOL_H_
#define _MEMORY_POOL_H_

#include <stdint.h>
#include <mutex>

template<size_t BlockSize, size_t BlockNum = 10>
class MemoryPool
{
public:
	MemoryPool()
	{
		std::lock_guard<std::mutex> lk(mtx); // avoid race condition

		// init empty memory pointer
		free_block_head = NULL;
		mem_chunk_head = NULL;
	}

	~MemoryPool()
	{
		std::lock_guard<std::mutex> lk(mtx); // avoid race condition

		// destruct automatically
		MemChunk* p;
		while (mem_chunk_head)
		{
			p = mem_chunk_head->next;
			delete mem_chunk_head;
			mem_chunk_head = p;
		}
	}

	void* allocate()
	{
		std::lock_guard<std::mutex> lk(mtx); // avoid race condition

		// allocate one object memory

		// if no free block in current chunk, should create new chunk
		if (!free_block_head)
		{
			// malloc mem chunk
			MemChunk* new_chunk = new MemChunk;
			new_chunk->next = NULL;

			// set this chunk's first block as free block head
			free_block_head = &(new_chunk->blocks[0]);

			// link the new chunk's all blocks
			for (int i = 1; i < BlockNum; i++)
				new_chunk->blocks[i - 1].next = &(new_chunk->blocks[i]);
			new_chunk->blocks[BlockNum - 1].next = NULL; // final block next is NULL
			
			if (!mem_chunk_head)
				mem_chunk_head = new_chunk;
			else
			{
				// add new chunk to chunk list
				mem_chunk_head->next = new_chunk;
				mem_chunk_head = new_chunk;
			}
		}

		// allocate the current free block to the object
		void* object_block = free_block_head;
		free_block_head = free_block_head->next; 

		return object_block;
	}

	void* allocate(size_t size)
	{
		std::lock_guard<std::mutex> lk(array_mtx); // avoid race condition for continuous memory

		// calculate objects num
		int n = size / BlockSize;

		// allocate n objects in continuous memory
		
		// FIXME: make sure n > 0
		void* p = allocate();

		for (int i = 1; i < n; i++)
			allocate();

		return p;
	}

	void deallocate(void* p)
	{
		std::lock_guard<std::mutex> lk(mtx); // avoid race condition

		// free object memory
		FreeBlock* block = static_cast<FreeBlock*>(p);
		block->next = free_block_head; // insert the free block to head
		free_block_head = block;
	}

private:
	// free node block, every block size exactly can contain one object
	struct FreeBlock
	{
		unsigned char data[BlockSize];
		FreeBlock* next;
	};

	FreeBlock* free_block_head;

	// memory chunk, every chunk contains blocks number with fixed BlockNum
	struct MemChunk
	{
		FreeBlock blocks[BlockNum];
		MemChunk* next;
	};

	MemChunk* mem_chunk_head;

	// thread safe related
	std::mutex mtx;
	std::mutex array_mtx;
};

#endif // !_MEMORY_POOL_H_

main.cpp

#include <iostream>
#include "memory_pool.hpp"

class MyObject
{
public:
	MyObject(int x): data(x)
	{
		//std::cout << "contruct object" << std::endl;
	}

	~MyObject()
	{
		//std::cout << "destruct object" << std::endl;
	}

	int data;

	// override new and delete to use memory pool
	void* operator new(size_t size);
	void operator delete(void* p);
	void* operator new[](size_t size);
	void operator delete[](void* p);
};

// define memory pool with block size as class size
MemoryPool<sizeof(MyObject), 3> gMemPool;


void* MyObject::operator new(size_t size)
{
	//std::cout << "new object space" << std::endl;
	return gMemPool.allocate();
}

void MyObject::operator delete(void* p)
{
	//std::cout << "free object space" << std::endl;
	gMemPool.deallocate(p);
}

void* MyObject::operator new[](size_t size)
{
	// TODO: not supported continuous memoery pool for now
	//return gMemPool.allocate(size);
	return NULL;
}
void MyObject::operator delete[](void* p)
{
	// TODO: not supported continuous memoery pool for now
	//gMemPool.deallocate(p);
}

int main(int argc, char* argv[])
{
	MyObject* p1 = new MyObject(1);
	std::cout << "p1 " << p1 << " " << p1->data<< std::endl;

	MyObject* p2 = new MyObject(2);
	std::cout << "p2 " << p2 << " " << p2->data << std::endl;
	delete p2;

	MyObject* p3 = new MyObject(3);
	std::cout << "p3 " << p3 << " " << p3->data << std::endl;

	MyObject* p4 = new MyObject(4);
	std::cout << "p4 " << p4 << " " << p4->data << std::endl;

	MyObject* p5 = new MyObject(5);
	std::cout << "p5 " << p5 << " " << p5->data << std::endl;

	MyObject* p6 = new MyObject(6);
	std::cout << "p6 " << p6 << " " << p6->data << std::endl;

	delete p1;
	delete p2;
	//delete p3;
	delete p4;
	delete p5;
	delete p6;

	getchar();
	return 0;
}

运行结果

p1 00000174BEDE0440 1
p2 00000174BEDE0450 2
p3 00000174BEDE0450 3
p4 00000174BEDE0460 4
p5 00000174BEDD5310 5
p6 00000174BEDD5320 6

可以看到内存地址是连续,并且回收一个节点后,依然有序地开辟内存
对象先开辟内存再构造,先析构再释放内存

注意

  • 在内存分配和释放的环节需要加锁来保证线程安全

  • 还没有实现对象数组的分配和释放

感谢各位的阅读,以上就是“C++中内存池的原理及实现方法是什么”的内容了,经过本文的学习后,相信大家对C++中内存池的原理及实现方法是什么这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

c++
AI