温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

C++ BloomFilter布隆过滤器如何应用

发布时间:2023-03-08 11:37:52 来源:亿速云 阅读:125 作者:iii 栏目:开发技术

这篇“C++ BloomFilter布隆过滤器如何应用”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“C++ BloomFilter布隆过滤器如何应用”文章吧。

    一、布隆过滤器概念

    布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的 一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”,它是用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间 .

    位图的优点是节省空间,快,缺点是要求范围相对集中,如果范围分散,空间消耗上升,同时只能针对整型,字符串通过哈希转化成整型,再去映射,对于整型没有冲突,因为整型是有限的,映射唯一的位置,但是对于字符串来说,是无限的,会发生冲突,会发生误判:此时的情况的是不在是正确的,在是不正确的,因为可能不来是不在的,但是位置跟别人发生冲突,发生误判

    此时布隆过滤器就登场了,可以降低误判率:让一个值映射多个位置,但是并不是消除误判

    C++ BloomFilter布隆过滤器如何应用

    可能还是会出现误判:

    C++ BloomFilter布隆过滤器如何应用

    虽然布隆过滤器还是会出现误判,因为这个数据的比特位被其他数据所占,但是判断一个数据不存在是准确,不存在就是0!

    布隆过滤器改进:映射多个位置,降低误判率(位置越多,消耗也越多)

    如果布隆过滤器长度比较小,比特位很快会被占为1,误判率自然会上升,所以布隆过滤器的长度会影响误判率,理论上来说,如果一个值映射的位置越多,则误判的概率越小,但是并不是位置越多越好,空间也会消耗:大佬们自然也能够想得到,所以有公式:

    C++ BloomFilter布隆过滤器如何应用

    我们可以来估算一下,假设用 3 个哈希函数,即K=3,ln2 的值我们取 0.7,那么 m 和 n 的关系大概是 m = n×k/ln2=4.2n ,也就是过滤器长度应该是插入元素个数的 4 -5倍

    二、布隆过滤器应用

    不需要一定准确的场景。比如游戏注册时候的昵称的判重:如果不在那就是不在,没被使用,在的话可能会被误判。

    提高查找效率:客户端中查找一个用户的ID与服务器中的是否相同,在增加一层布隆过滤器提高查找效率:

    C++ BloomFilter布隆过滤器如何应用

    三、布隆过滤器实现

    布隆过滤器的插入元素可能是字符串,也可能是其他类型,只要提供对应的哈希函数将该类型的数据转换成整型就可以了。

    一般情况下布隆过滤器都是用来处理字符串的,所以布隆过滤器可以实现为一个模板类,将模板参数 T 的缺省类型设置为 string:

    template <size_t N,size_t X = 5,class K=string,
    		class HashFunc1 = BKDRHash,
    		class HashFunc2 = APHash,
    		class HashFunc3 = DJBHash>
    class BloomFilter
    	{
        public:
        private:
    		bitset<N * X> _bs;
    	};

    这里布隆过滤器提供三个哈希函数,由于布隆过滤器一般处理的是字符串类型的数据,所以我们默认提供几个将字符串转换成整型的哈希函数:选取综合评分最高的 BKDRHash、APHash 和 DJBHash这三种哈希算法:

       struct BKDRHash
    	{
    		size_t operator()(const string& key)
    		{
    			size_t hash = 0;
    			for (auto ch : key)
    			{
    				hash *= 131;
    				hash += ch;
    			}
    			return hash;
    		}
    	};
    	struct APHash
    	{
    		size_t operator()(const string& key)
    		{
    			size_t hash = 0;
    			int i = 0;
    			for (auto ch : key)
    			{
    				if ((i & 1) == 0)
    				{
    					hash ^= ((hash << 7) ^ (ch) ^ (hash >> 3));
    				}
    				else
    				{
    					hash ^= (~((hash << 11) ^ (ch) ^ (hash >> 5)));
    				}
    				++i;
    			}
    			return hash;
    		}
    	};
    	struct DJBHash
    	{
    		size_t operator()(const string& key)
    		{
    			size_t hash = 5318;
    			for (auto ch : key)
    			{
    				hash += (hash << 5) + ch;
    			}
    			return hash;
    		}
    	};

    1.插入

    布隆过滤器复用bitset的 set 接口用于插入元素,插入元素时,我们通过上面的三个哈希函数分别计算出该元素对应的三个比特位,然后在位图中设置为1即可:

            void set(const K& key)
    		{
    			size_t hash2 = HashFunc1()(key) % (N * X);
    			size_t hash3 = HashFunc2()(key) % (N * X);
    			size_t hash4 = HashFunc3()(key) % (N * X);
    			_bs.set(hash2);
    			_bs.set(hash3);
    			_bs.set(hash4);
    			_bs.set(hash5);
    		}

    2.查找

    通过三个哈希函数分别算出对应元素的三个哈希地址,得到对应的比特位,然后去判断这三个比特位是否都被设置成了1

    如果出现一个比特位未被设置成1说明该元素一定不存在,也就是如果一个比特位为0就是false;而如果三个比特位全部都被设置,则return true表示该元素已经存在(注:可能会出现误判)

            bool test(const K& key)
    		{
    			size_t hash2 = HashFunc1()(key) % (N * X);
    			if (!_bs.test(hash2))
    			{
    				return false;
    			}
    			size_t hash3 = HashFunc2()(key) % (N * X);
    			if (!_bs.test(hash3))
    			{
    				return false;
    			}
    			size_t hash4 = HashFunc3()(key) % (N * X);
    			if (!_bs.test(hash4))
    			{
    				return false;
    			}
    			return true;
    		}

    3.删除

    布隆过滤器一般没有删除,因为布隆过滤器判断一个元素是会存在误判,此时无法保证要删除的元素在布隆过滤器中,如果此时将位图中对应的比特位清0,就会影响到其他元素了:

    C++ BloomFilter布隆过滤器如何应用

    这时候我们只需要在每个比特位加一个计数器,当存在插入操作时,在计数器里面进行 ++,删除后对该位置进行 -- 即可

    C++ BloomFilter布隆过滤器如何应用

    但是布隆过滤器的本来目的就是为了提高效率和节省空间,在每个比特位增加额外的计数器,空间消耗那就更多了

    四、布隆过滤器优缺

    \1. 增加和查询元素的时间复杂度为:O(K), (K为哈希函数的个数,一般比较小),与数据量大小无关

    \2. 哈希函数相互之间没有关系,方便硬件并行运算

    \3. 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势

    \4. 在能够承受一定的误判时,布隆过滤器比其他数据结构有这很大的空间优势

    \5. 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能

    \6. 使用同一组散列函数的布隆过滤器可以进行交、并、差运算

    \1. 有误判率,不能准确判断元素是否在集合中(补救方法:再建立一个白名单,存储可能会误判的数据)

    \2. 不能获取元素本身

    \3. 一般情况下不能从布隆过滤器中删除元素

    五、结语

    给两个文件,分别有100亿个query,我们只有1G内存,如何找到两个文件交集?分别给出精确算法和近似算法?

    近似算法:利用布隆过滤器,交集的就一定会进去,但是可能会存在误判:不同的也会进去,这是近似

    精准算法:query一般是查询指令,比如可能是网络请求,或者是一个数据库sql语句

    100亿个query,假设平均每个query是50byte,则100亿个query那就是合计500GB

    相同的query,是一定进入相同编号的小文件,再对这些文件放进内存的两个set中,编号相同的Ai和Bi小文件找交集即可

    C++ BloomFilter布隆过滤器如何应用

    以上就是关于“C++ BloomFilter布隆过滤器如何应用”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注亿速云行业资讯频道。

    向AI问一下细节

    免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

    AI