温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

numpy中的np.random.random()函数怎么使用

发布时间:2023-03-14 11:23:45 来源:亿速云 阅读:118 作者:iii 栏目:开发技术

这篇“numpy中的np.random.random()函数怎么使用”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“numpy中的np.random.random()函数怎么使用”文章吧。

(一)np.random.rand()

该函数括号内的参数指定的是返回结果的形状,如果不指定,那么生成的是一个浮点型的数;如果指定一个数,那么生成的是一个numpy.ndarray类型的数组;如果指定两个数字,那么生成的是一个二维的numpy.ndarray类型的数组。如果是两个以上的数组,那么返回的维度就和指定的参数的数量个数一样。其返回结果中的每一个元素是服从0~1均匀分布的随机样本值,也就是返回的结果中的每一个元素值在0-1之间

举例说明:

import numpy as np
mat = np.random.rand()
print(mat)
print(type(mat))
mat = np.random.rand(2)
print(mat)
print(type(mat))
mat = np.random.rand(3, 2)
print(mat)
print(type(mat))

结果为:注意我用红框框起来的一组对应两个print输出,可对应程序看结果。

numpy中的np.random.random()函数怎么使用

(二)np.random.randn()

        该函数和rand()函数比较类似,只不过运用该函数之后返回的结果是服从均值为0,方差为1的标准正态分布,而不是局限在0-1之间,也可以为负值,因为标准正态分布的曲线是关于x轴对阵的。其括号内的参数如果不指定,那么生成的是一个浮点型的数;如果指定一个数,那么生成的是一个numpy.ndarray类型的数组;如果指定两个数字,那么生成的是一个二维的numpy.ndarray类型的数组。和rand()相比,除了元素值不一样,其他的性质是一样的。

举例说明:

import numpy as np
mat = np.random.randn()
print(mat)
print(type(mat))
mat = np.random.randn(2)
print(mat)
print(type(mat))
mat = np.random.randn(3, 2)
print(mat)
print(type(mat))

结果为:

numpy中的np.random.random()函数怎么使用

(三)np.random.randint(low,high,size,dtype)

该函数中包含了几个参数,其具体含义为:

low:生成的元素值的最小值,即下限,如果没有指定high这个参数,则low为生成的元素值的最大值。

high:生成的元素值的最大值,即上限。

size:指定生成元素值的形状,也就是数组维度的大小。

dtype:指定生成的元素值的类型,如果不指定,默认为整数型

返回结果:返回值是一个大小为size的数组,如果指定了low和high这两个参数,那么生成的元素值的范围为[low,high),不包括high;如果不指定high这个参数,则生成的元素值的范围为[0,low)。如果不指定size这个参数,那么生成的元素值的个数只有一个。

举例说明:

import numpy as np
# 指定一个参数low
mat = np.random.randint(low=1)
print(mat)
print(type(mat))
 
# 指定low和high,生成一个[low,high)的元素值
mat = np.random.randint(low=1, high=5)
print(mat)
print(type(mat))
 
# 指定size大小,生成一个三行三列的二维数组,元素个数为3x3=9个
mat = np.random.randint(low=2, high=10, size=(3, 3))
print(mat)
# 查看默认元素值的类型
print(type(mat[0][0]))
 
mat = np.random.randint(low=2, high=10, size=(3, 3), dtype=np.uint8)
print(mat)
print(type(mat[0][0]))

结果为:

numpy中的np.random.random()函数怎么使用

(四)np.random.uniform(low,high,size)

参数说明:

low:生成元素值的下界,float类型,默认值为0
high:生成元素值的上界,float类型,默认值为1
size:输出样本的数目,可以指定一个值,也可指指定大于等于两个值
返回对象:ndarray类型,形状为size中的数值指定,其元素个数为size指定的参数的乘积

我们前面已经说过了rand()这个函数,它返回的元素值是服从0-1的均匀分布,那如果不想要生成的是0-1范围内的均匀分布,想要其它范围内的均匀分布怎么办呢。

uniform()实现了这个功能,它可以生成服从指定范围内的均匀分布的元素。其返回值的元素类型为浮点型。需注意的是元素值的范围包含low,不包含high。

举例说明:

import numpy as np
# 指定一个参数low
mat = np.random.uniform()
print(mat)
print(type(mat))
 
# 指定low和high,生成一个[low,high)的元素值
mat = np.random.uniform(low=5, high=10)
print(mat)
print(type(mat))
 
# 指定size大小,生成一个三行三列的二维数组,元素个数为3x3=9个
mat = np.random.uniform(low=2, high=10, size=(3, 3))
print(mat)
# 查看默认元素值的类型
print(type(mat[0][0]))
 
mat = np.random.uniform(low=2, high=10, size=(3, 3, 2))
print(mat)
print(type(mat[0][0][0]))

结果为:

numpy中的np.random.random()函数怎么使用

以上就是关于“numpy中的np.random.random()函数怎么使用”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI