温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

k8s容器互联flannel vxlan通信原理是什么

发布时间:2023-04-08 16:21:40 来源:亿速云 阅读:86 作者:iii 栏目:开发技术

这篇文章主要介绍“k8s容器互联flannel vxlan通信原理是什么”,在日常操作中,相信很多人在k8s容器互联flannel vxlan通信原理是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”k8s容器互联flannel vxlan通信原理是什么”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

vxlan 模式通信原理

flannel 在为不同主机的pod分配ip地址的时候,会在一个大的网段范围内分配ip地址,而同一台主机上的pod,则是在大的网段下延伸出一个较小的子网,同一台主机上的ip地址则是在较小的子网范围内去进行分配。

例如k8s启动flannel插件时,会通过flannel的配置文件指定大的网段的范围和flannel启动方式,我们选用的是vxlan模式

  net-conf.json: |
    {
      "Network": "10.10.0.0/16",
      "Backend": {
        "Type": "vxlan"
      }
    }

这样整个集群的ip地址就是在10.10.0.0/16 网段去进行分配。 而各个主机上的ip地址范围 则是在例如10.10.1.0/24 ,10.10.2.0/24这样的网段去进行分配。

跨主机通信的目的,就是让主机A上的网段10.10.1.0/24 内分配的ip能够ping通主机B上的 10.10.2.0/24 网段分配的ip。

flannel的xvlan模式是如何办到的呢?

为了更好的理解vxlan的模式,我搭建了一个真实的3节点集群环境,然后实际的去主机上分析vxlan工作模式

集群网络模型

集群有3个节点:

master 集群的控制节点,ip地址是 192.168.2.17;

worker1 工作节点 ip地址是 192.168.2.16;

worker2 工作节点 ip 地址是 192.168.2.15 ;

由于工作节点才承担具体的pod承载认为,所以我们只看工作节点即可。

这里先放一张集群网络模型的图,接下来的分析都将会根据这个图一步步分析网络包时如何从worker2 的pod到达到worker1的pod的。

k8s容器互联flannel vxlan通信原理是什么

查看worker2网络设备类型

查看网络接口有哪些

parallels@worker2:~/Desktop$ ifconfig
cni0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1450
        inet 10.10.2.1  netmask 255.255.255.0  broadcast 10.10.2.255
       ...
docker0: flags=4099<UP,BROADCAST,MULTICAST>  mtu 1500
        inet 172.17.0.1  netmask 255.255.0.0  broadcast 172.17.255.255
        ether 02:42:41:ce:a9:49  txqueuelen 0  (Ethernet)
        ...
enp0s5: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
        inet 192.168.2.15  netmask 255.255.255.0  broadcast 192.168.2.255
        ...
flannel.1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1450
        inet 10.10.2.0  netmask 255.255.255.255  broadcast 0.0.0.0
        inet6 fe80::647c:5aff:fe24:c42e  prefixlen 64  scopeid 0x20<link>
        ether 66:7c:5a:24:c4:2e  txqueuelen 0  (Ethernet)
        ...
lo: flags=73<UP,LOOPBACK,RUNNING>  mtu 65536
        inet 127.0.0.1  netmask 255.0.0.0
        ...
veth9c0a9a53: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1450
        inet6 fe80::fc7d:fdff:fe6f:a32e  prefixlen 64  scopeid 0x20<link>
        ether fe:7d:fd:6f:a3:2e  txqueuelen 0  (Ethernet)
        ...
vethd6f08999: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1450
        inet6 fe80::68b2:41ff:fee2:9074  prefixlen 64  scopeid 0x20<link>
        ether 6a:b2:41:e2:90:74  txqueuelen 0  (Ethernet)
        ...

k8s 在主上创建一个cni0和flannel.1的虚拟网络设备,cni0是网桥类型的设备,flannel.1是vxlan类型的设备 (准确的说是vtep设备,在vxlan模式下,我们将这个封包解包的设备叫做vtep设备VXLAN Tunnel Endpoints)。

记下这里worker2节点上cni0的ip地址10.10.2.1 ,flannel.1的ip地址 10.10.2.0

parallels@worker2:~/Desktop$ ethtool -i flannel.1
driver: vxlan
...
parallels@worker2:~/Desktop$ ethtool -i cni0
driver: bridge
...

先看下网桥的作用(vxlan设备作用稍后进行分析) 网桥拥有交换机的作用。

我们知道,在同一台主机上,不同pod的网络命名空间是不同的,在linux上有一种veth的虚拟网络设备,它是成对出现的,所以也被叫做veth pair,可以连接不同命名空间。

从veth一端发出去的包能够被另外一端接收到,通过veth pair能够连通两个命名空间。

但是如果一台主机上,有许多pod,要想让那么多pod都连通的话,就得两两建立veth pair设备,这样的排列组合数量随着pod的增加会变得相当大。

而网桥的出现能够让这个网络模型变成 veth pair的一端连通着pod的网络命名空间,一端是连接在网桥上,让网桥充当交换机的作用,同一台主机的不同pod的数据包都经过网桥去进行转发。

交换机是工作在网络的第二层,所以只会将数据包解析到数据帧的格式,只认mac地址,如果是广播帧,转发给所有接入网桥的设备,如果是单播帧,那么就会发往特定的端口。

但是网桥作为交换机与之不同的一点是,网桥具有将转发数据包到主机的三层网络协议栈的功能,如果发往网桥的数据包的mac地址就是网桥自身mac地址的话,那么网桥就会认为数据包是要发往数据的数据包,然后去对其进行转发。

查看集群pod 信息

再结合 pod 看看pod内部的网络数据包是如何输出到网桥上的。我在集群内部启动了一个3副本的busybox镜像的 pod。

来看看pod分布的工作节点以及其ip地址

(base) ➜  ~ kubectl get pods -o wide
NAME                       READY   STATUS    RESTARTS        AGE     IP          NODE      NOMINATED NODE   READINESS GATES
busybox-8647b8666c-74nmg   1/1     Running   0               3h29m   10.10.1.3   worker1   <none>           <none>
busybox-8647b8666c-bwgh9   1/1     Running   1 (4h39m ago)   12d     10.10.2.4   worker2   <none>           <none>
busybox-8647b8666c-qwzrh   1/1     Running   1 (4h39m ago)   4h67m   10.10.2.5   worker2   <none>           <none>

我们的目的就是让worker2节点上ip为10.10.2.4 的pod能ping通 worker1节点上ip为10.10.1.3的pod

进入worker2节点上 ip为10.10.2.4 的pod内部看看路由信息。

/ # route -n
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
0.0.0.0         10.10.2.1       0.0.0.0         UG    0      0        0 eth0
10.10.0.0       10.10.2.1       255.255.0.0     UG    0      0        0 eth0
10.10.2.0       0.0.0.0         255.255.255.0   U     0      0        0 eth0

还记得刚刚说的worker2节点上的cni0网桥的ip是10.10.2.1 吗?

通过路由信息,可以看到10.10.2.1正是pod的网关,所以如果在pod内部 ping worker1上的pod ip 10.10.1.3 ,就会匹配上第二条路由信息。

那么worker2 的pod发出去的数据包就指定到达10.10.2.1这个ip上,所以mac地址就是10.10.2.1对应的mac地址,即cni0的mac地址。

正是由于这个原因,触发了cni0网桥的转发到主机上的三层网络协议栈的这个机制,而到达worker2主机后,通过ip要看具体转发到哪张网卡是看主机的路由信息的,所以,先看下worker2的路由信息。

parallels@worker2:~/Desktop$ route -n
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
0.0.0.0         192.168.2.1     0.0.0.0         UG    100    0        0 enp0s5
10.10.0.0       10.10.0.0       255.255.255.0   UG    0      0        0 flannel.1
10.10.1.0       10.10.1.0       255.255.255.0   UG    0      0        0 flannel.1
10.10.2.0       0.0.0.0         255.255.255.0   U     0      0        0 cni0
172.17.0.0      0.0.0.0         255.255.0.0     U     0      0        0 docker0
192.168.2.0     0.0.0.0         255.255.255.0   U     100    0        0 enp0s5
192.168.2.1     0.0.0.0         255.255.255.255 UH    100    0        0 enp0s5

我们数据包目的地是worker1上的pod ,ip是10.10.1.3 ,通过路由信息,看到属于10.10.1.0/24这个网段的数据包都会经过 flannel.1发出,网关是10.10.1.0 ,这个ip也就是对端vtep设备的ip地址

数据包就这样从worker2的pod来到了worker2节点上的flannel.1 这个网卡上。

flannel.1会对数据包进行一些加工,加工时需要加上对端vtep的mac地址,由于flannel.1 通过路由信息已经知道对端vtep的ip地址,通过查询本地arp缓存表,得到目的vtep的mac地址。

parallels@worker2:~/Desktop$ ip neigh show dev flannel.1
10.10.1.0 lladdr 72:5a:79:44:22:7b PERMANENT
10.10.0.0 lladdr 62:03:91:cb:cc:36 PERMANENT

k8s是通过flanneld(在flannel插件工作模式下,每个节点上都有一个flanneld的后台进程,对节点上的一些网络信息进行配置)在worker2的arp缓存中写入了mac地址,且永不过期。

同时还会加上vxlan头部信息,在头部信息中表明了这是一个vxlan帧,这样worker1节点收到数据包时,知道这是一个vxlan帧后,会将这个包去进行解包操作,同时头部信息中也包含一个vni的信息,只有vni相同的网络设备才有解包的资格。

这样封装以后,还需要将这个包发往对端vtep所在的主机节点,怎么发送呢?

worker2的flannel.1用udp格式的数据包再包裹一下vxlan帧,封装成udp时,需要知道对端的ip地址。

这里封装成udp包的时候,是如何知道目的节点主机的ip的呢。 flannel.1 通过查询本机的一个叫做fdb的转发数据库获取目的节点主机的ip。

parallels@worker2:~/Desktop$ bridge fdb show flannel.1 | grep 72:5a:79:44:22:7b
72:5a:79:44:22:7b dev flannel.1 dst 192.168.2.16 self permanent

注意这些配置信息是在woker1节点启动后,就会在worker2节点自动加上的,而完成配置信息的动作是由各个主机上的flanneld进程完成的

知道了udp的目的ip后,就是一个正常数据包在宿主机上的封包,发送流程了。

这样,数据包就到达了worker1。

worker1节点的接收过程

worker1 的内核协议栈收到数据包以后,发现有vxlan header以及vni标记是1,就将这个vxlan包发给本机的vni标记也为1的flannel.1设备。

然后flannel.1进行解包,取出数据包的目的ip是10.10.1.3,然后查看worer1本机路由信息。

arallels@worker1:~/Desktop$ route -n
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
0.0.0.0         192.168.2.1     0.0.0.0         UG    100    0        0 enp0s5
10.10.0.0       10.10.0.0       255.255.255.0   UG    0      0        0 flannel.1
10.10.1.0       0.0.0.0         255.255.255.0   U     0      0        0 cni0
10.10.2.0       10.10.2.0       255.255.255.0   UG    0      0        0 flannel.1
172.17.0.0      0.0.0.0         255.255.0.0     U     0      0        0 docker0
192.168.2.0     0.0.0.0         255.255.255.0   U     100    0        0 enp0s5
192.168.2.1     0.0.0.0         255.255.255.255 UH    100    0        0 enp0s5
parallels@worker1:~/Desktop$

发现发往10.10.1.0/24这个网段的包要经过cni0网桥,所以flannel.1将解包后的数据包转发给了cni0网桥。

接下来就是cni0网桥在一个10.10.1.0/24 子网内发送目的ip为 10.10.1.3 的流程了。

cni0网桥先通过10.10.1.3查找本地mac地址,如果有则发往mac地址对应的端口,端口连通的另一端是veth设备也是worker1上的pod的网卡。

如果没有10.10.1.3的mac地址,则先通过arp协议,在一个局域网内获得arp响应包后,再发送数据包到对应端口连通的pod veth网卡上。

至此,worker1成功收到了worker2发送的数据包了。

再看flannel xvlan模式

本质上是通过flannel.1这个vxlan设备对主机发出去的数据包进行udp封装,然后发往经过物理网卡发往对端。

再进一步思考下,udp是可以丢包的,那么经过udp去封装数据包 的网络传输是可靠的吗?

答案是不需要可靠,整个flannel的转发模型,可以看出flannel完成的是网络模型的第三层次ip层的互通, 这里udp封装的ip包实际上是充当了第二层链路层的工作了,传输的可靠性是靠传输层实现的,传输层的靠是在对应pod所在命名空间中的tcp 的重传保证的。

到此,关于“k8s容器互联flannel vxlan通信原理是什么”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI