温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

怎么用Python求矩阵的范数和行列式

发布时间:2023-05-06 15:16:42 来源:亿速云 阅读:364 作者:iii 栏目:开发技术

这篇文章主要介绍“怎么用Python求矩阵的范数和行列式”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“怎么用Python求矩阵的范数和行列式”文章能帮助大家解决问题。

scipy.linalg的函数中,往往会提供两种参数,其一是check_finite,当为True时将进行有限检查,另一类是overwrite_xxxx,表示xxxx在计算过程中是否可以被覆写。简洁起见,后文中说a提供覆写开关,就表示存在一个参数overwrite_a,当其为True时,a允许计算过程中被覆写;若说提供有限检查开关,则代表提供check_finite参数。

范数

scipy.linalg中提供了函数norm用来求范数,其定义为

norm(a, ord=None, axis=None, keepdims=False, check_finite=True)

其中ord用于声明范数的阶 

ord矩阵范数向量范数



None弗罗贝尼乌斯范数2-范数
'fro'弗罗贝尼乌斯范数-
'nuc'核范数-
infmax(sum(abs(a), axis=1))max ⁡ ( ∣ a ∣ ) 
-infmin(sum(abs(a), axis=1))min ⁡ ( ∣ a ∣ ) 
0-sum(a!=0)
1max(sum(abs(a), axis=0))
-1min(sum(abs(a), axis=0))
22-范数(最大奇异值)
-2最小奇异值

 若a为向量,若ord为非零整数,记作n nn,设a i a_iai为矩阵a aa中的元素,则矩阵的n nn范数为

怎么用Python求矩阵的范数和行列式

核范数又称“迹范数” (trace norm),表示矩阵的所有奇异值之和。

Frobenius范数可定义为

怎么用Python求矩阵的范数和行列式

其实质是向量的2-范数在矩阵中的自然推广。

除了scipy.linalg之外,numpy.linalg中也提供了norm,其参数为

norm(x, ord=None, axis=None, keepdims=False)

其中order的可选参数与scipy.linalg中的norm函数相同。

行列式

scipy.linalg中,行列式函数为det,其定义非常简单,除了待求矩阵a之外,就只有a的覆写开关和有限检查。

示例如下

import numpy as np
from scipy import linalg
a = np.array([[1,2,3], [4,5,6], [7,8,9]])
linalg.det(a)
# 0.0
a = np.array([[0,2,3], [4,5,6], [7,8,9]])
linalg.det(a)
# 3.0

scipy.linalg不提供trace函数,但是numpy提供,其定义为

umpy.trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None)

其中

  • offset为偏移量,表示相对于主对角线的偏移

  • axis1, axis2 表示坐标轴

  • dtype 用于调整输出值的数据类型

>>> x = np.random.rand(3,3)
>>> print(x)
[[0.26832187 0.64615363 0.09006217]
 [0.63106319 0.65573765 0.35842304]
 [0.66629322 0.16999836 0.92357658]]
>>> np.trace(x)
1.8476361016546932

关于“怎么用Python求矩阵的范数和行列式”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注亿速云行业资讯频道,小编每天都会为大家更新不同的知识点。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI