这篇文章主要讲解了“怎么使用VUE+faceApi.js实现摄像头拍摄人脸识别”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么使用VUE+faceApi.js实现摄像头拍摄人脸识别”吧!
前端获取到摄像头信息,通过模型来进行判断人像是否在镜头中,镜头是否有被遮挡。
1、通过video标签来展示摄像头中的内容
2、通过canvas来绘制视频中信息进行展示
3、在拍照时候将canvas的当前帧转成图片
face-api.js是核心依赖必须要下
npm install face-api.js
element-ui为了按钮好看一点(可以不下) ,axios用于请求发送
npm istall element-ui axios -S
element-ui根据官方文档进行引入使用
import Vue from 'vue'; import ElementUI from 'element-ui'; import 'element-ui/lib/theme-chalk/index.css'; import App from './App.vue'; Vue.use(ElementUI); new Vue({ el: '#app', render: h => h(App) });
<template> <div> <el-button type="primary" @click="useCamera">打开摄像头</el-button> <el-button type="plain" @click="photoShoot">拍照</el-button> <el-alert :title="httpsAlert" type="info" :closable="false" v-show="httpsAlert !== ''"> </el-alert> <div class="videoImage" ref="faceBox"> <video ref="video" ></video> <canvas ref="canvas" width="400" height="400" v-show="videoShow"></canvas> <img ref="image" :src="picture" alt="" v-show="pictureShow"> </div> </div> </template>
import * as faceApi from 'face-api.js'
1、视频和图片不同时出现
videoShow: false, pictureShow: false,
2、生成图片后用于保存图片路径
picture: '',
3、因为在操作时会用到DOM所以将要用到虚拟DOM保存在data中
canvas: null, video: null, image: null,
4、模型识别时直接传入此属性,在初始化时赋值(可省略,直接卸载逻辑代码中)
options: ''
5、在人脸识别时对结果进行反馈(识别出人像数量大于1或小于1时给出提示)
noOne: '', moreThanOne: '',
6、如果用户不是在https下进行使用摄像头调用给出提示
httpsAlert: ''
1、初始化模型
2、获取需要用到的虚拟DOM
async init() { await faceApi.nets.ssdMobilenetv1.loadFromUri("/models"); await faceApi.loadFaceLandmarkModel("/models"); this.options = new faceApi.SsdMobilenetv1Options({ minConfidence: 0.5, // 0.1 ~ 0.9 }); // 视频中识别使用的节点 this.video = this.$refs.video this.canvas = this.$refs.canvas this.image = this.$refs.image }
通过navigator.mediaDevices.getUserMedia()
useCamera(){ this.videoShow = true this.pictureShow = false this.cameraOptions() }, cameraOptions(){ let constraints = { video: { width: 400, height: 400 } } // 如果不是通过loacalhost或者通过https访问会将报错捕获并提示 try{ let promise = navigator.mediaDevices.getUserMedia(constraints); promise.then((MediaStream) => { // 返回参数 this.video.srcObject = MediaStream; this.video.play(); this.recognizeFace() }).catch((error) => { console.log(error); }); }catch(err){ this.httpsAlert = `您现在在使用非Https访问, 请先在chrome://flags/#unsafely-treat-insecure-origin-as-secure中修改配置, 添将当前链接${window.location.href}添加到列表, 并且将Insecure origins treated as secure修改为enabled, 修改完成后请重启浏览器后再次访问!` } }
这里通过递归的方式将视频中的内容用canvas显示
将canvas的节点传入到faceApi的方法中进行识别
通过faceApi返回的数组可以得到当前人脸的识别状况(数组长度0没有识别到人脸,长度1识别到一个人脸...以此类推)
async recognizeFace(){ if (this.video.paused) return clearTimeout(this.timeout); this.canvas.getContext('2d', { willReadFrequently: true }).drawImage(this.video, 0, 0, 400, 400); const results = await faceApi.detectAllFaces(this.canvas, this.options).withFaceLandmarks(); if(results.length === 0){ if(this.moreThanOne !== ''){ this.moreThanOne.close() this.moreThanOne = '' } if(this.noOne === ''){ this.noOne = this.$message({ message: '未识别到人脸', type: 'warning', duration: 0 }); } }else if(results.length > 1){ if(this.noOne !== ''){ this.noOne.close() this.noOne = '' } if(this.moreThanOne === ''){ this.moreThanOne = this.$message({ message: '检测到镜头中有多个人', type: 'warning', duration: 0 }); } }else{ if(this.noOne !== ''){ this.noOne.close() this.noOne = '' } if(this.moreThanOne !== ''){ this.moreThanOne.close() this.moreThanOne = '' } } this.timeout = setTimeout(() => { return this.recognizeFace() }); },
async photoShoot(){ // 拿到图片的base64 let canvas = this.canvas.toDataURL("image/png"); // 拍照以后将video隐藏 this.videoShow = false this.pictureShow = true // 停止摄像头成像 this.video.srcObject.getTracks()[0].stop() this.video.pause() if(canvas) { // 拍照将base64转为file流文件 let blob = this.dataURLtoBlob(canvas); let file = this.blobToFile(blob, "imgName"); // 将blob图片转化路径图片 let image = window.URL.createObjectURL(file) this.picture = image return let formData = new FormData() formData.append('file', this.picture) axios({ method: 'post', url: '/user/12345', data: formData }).then(res => { console.log(res) }).catch(err => { console.log(err) }) } else { console.log('canvas生成失败') } },
方法1:先将base64转为文件
方法2:设置新的文件中的参数信息
dataURLtoBlob(dataurl) { let arr = dataurl.split(','), mime = arr[0].match(/:(.*?);/)[1], bstr = atob(arr[1]), n = bstr.length, u8arr = new Uint8Array(n); while(n--) { u8arr[n] = bstr.charCodeAt(n); } return new Blob([u8arr], { type: mime }); }, blobToFile(theBlob, fileName) { theBlob.lastModifiedDate = new Date().toLocaleDateString(); theBlob.name = fileName; return theBlob; },
import bingImage from '@/assets/bbt1.jpg'; import BingWallpaper from '@/assets/BingWallpaper.jpg'; import * as faceApi from 'face-api.js' export default { name: 'Recognize', data(){ return{ videoShow: false, pictureShow: false, // 图片地址 picture: '', // 用于视频识别的节点 canvas: null, video: null, image: null, timeout: 0, // 模型识别的条件 options: '', // 提示控制 noOne: '', moreThanOne: '', // 不是通过Https访问提示 httpsAlert: '', } }, mounted() { // 初始化 this.init() }, beforeDestroy() { clearTimeout(this.timeout); }, methods: { async init() { await faceApi.nets.ssdMobilenetv1.loadFromUri("/models"); await faceApi.loadFaceLandmarkModel("/models"); this.options = new faceApi.SsdMobilenetv1Options({ minConfidence: 0.5, // 0.1 ~ 0.9 }); // 视频中识别使用的节点 this.video = this.$refs.video this.canvas = this.$refs.canvas this.image = this.$refs.image }, /** * 使用视频来成像摄像头 */ useCamera(){ this.videoShow = true this.pictureShow = false this.cameraOptions() }, /** * 使用摄像头 */ cameraOptions(){ let constraints = { video: { width: 400, height: 400 } } // 如果不是通过loacalhost或者通过https访问会将报错捕获并提示 try{ let promise = navigator.mediaDevices.getUserMedia(constraints); promise.then((MediaStream) => { // 返回参数 this.video.srcObject = MediaStream; this.video.play(); this.recognizeFace() }).catch((error) => { console.log(error); }); }catch(err){ this.httpsAlert = `您现在在使用非Https访问, 请先在chrome://flags/#unsafely-treat-insecure-origin-as-secure中修改配置, 添将当前链接${window.location.href}添加到列表, 并且将Insecure origins treated as secure修改为enabled, 修改完成后请重启浏览器后再次访问!` } }, /** * 人脸识别方法 * 通过canvas节点识别 * 节点对象执行递归识别绘制 */ async recognizeFace(){ if (this.video.paused) return clearTimeout(this.timeout); this.canvas.getContext('2d', { willReadFrequently: true }).drawImage(this.video, 0, 0, 400, 400); const results = await faceApi.detectAllFaces(this.canvas, this.options).withFaceLandmarks(); if(results.length === 0){ if(this.moreThanOne !== ''){ this.moreThanOne.close() this.moreThanOne = '' } if(this.noOne === ''){ this.noOne = this.$message({ message: '未识别到人脸', type: 'warning', duration: 0 }); } }else if(results.length > 1){ if(this.noOne !== ''){ this.noOne.close() this.noOne = '' } if(this.moreThanOne === ''){ this.moreThanOne = this.$message({ message: '检测到镜头中有多个人', type: 'warning', duration: 0 }); } }else{ if(this.noOne !== ''){ this.noOne.close() this.noOne = '' } if(this.moreThanOne !== ''){ this.moreThanOne.close() this.moreThanOne = '' } } // 通过canvas显示video信息 this.timeout = setTimeout(() => { return this.recognizeFace() }); }, /** * 拍照上传 */ async photoShoot(){ // 拿到图片的base64 let canvas = this.canvas.toDataURL("image/png"); // 拍照以后将video隐藏 this.videoShow = false this.pictureShow = true // 停止摄像头成像 this.video.srcObject.getTracks()[0].stop() this.video.pause() if(canvas) { // 拍照将base64转为file流文件 let blob = this.dataURLtoBlob(canvas); console.log(blob) let file = this.blobToFile(blob, "imgName"); console.info(file); // 将blob图片转化路径图片 let image = window.URL.createObjectURL(file) this.picture = image // 将拍照后的图片发送给后端 let formData = new FormData() formData.append('file', this.picture) axios({ method: 'post', url: '/user/12345', data: formData }).then(res => { console.log(res) }).catch(err => { console.log(err) }) } else { console.log('canvas生成失败') } }, /** * 将图片转为blob格式 * dataurl 拿到的base64的数据 */ dataURLtoBlob(dataurl) { let arr = dataurl.split(','), mime = arr[0].match(/:(.*?);/)[1], bstr = atob(arr[1]), n = bstr.length, u8arr = new Uint8Array(n); while(n--) { u8arr[n] = bstr.charCodeAt(n); } return new Blob([u8arr], { type: mime }); }, /** * 生成文件信息 * theBlob 文件 * fileName 文件名字 */ blobToFile(theBlob, fileName) { theBlob.lastModifiedDate = new Date().toLocaleDateString(); theBlob.name = fileName; return theBlob; }, } }
感谢各位的阅读,以上就是“怎么使用VUE+faceApi.js实现摄像头拍摄人脸识别”的内容了,经过本文的学习后,相信大家对怎么使用VUE+faceApi.js实现摄像头拍摄人脸识别这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。