温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

怎么使用VUE+faceApi.js实现摄像头拍摄人脸识别

发布时间:2023-05-04 14:36:43 来源:亿速云 阅读:275 作者:iii 栏目:开发技术

这篇文章主要讲解了“怎么使用VUE+faceApi.js实现摄像头拍摄人脸识别”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么使用VUE+faceApi.js实现摄像头拍摄人脸识别”吧!

    需求:

    前端获取到摄像头信息,通过模型来进行判断人像是否在镜头中,镜头是否有被遮挡。

    实现步骤:

    1、通过video标签来展示摄像头中的内容

    2、通过canvas来绘制视频中信息进行展示

    3、在拍照时候将canvas的当前帧转成图片

    第一步:下载引入必要包

    下载依赖

    face-api.js是核心依赖必须要下

    npm install face-api.js

    element-ui为了按钮好看一点(可以不下) ,axios用于请求发送

    npm istall element-ui axios -S

     element-ui根据官方文档进行引入使用

    import Vue from 'vue';
    import ElementUI from 'element-ui';
    import 'element-ui/lib/theme-chalk/index.css';
    import App from './App.vue';
    Vue.use(ElementUI);
    new Vue({
      el: '#app',
      render: h => h(App)
    });

    下载model

    将项目中的model放入VUE中的public文件加下

    怎么使用VUE+faceApi.js实现摄像头拍摄人脸识别

    怎么使用VUE+faceApi.js实现摄像头拍摄人脸识别

    第二步:先把HTML写上去 

    <template>
        <div>
            <el-button type="primary" @click="useCamera">打开摄像头</el-button>
            <el-button type="plain" @click="photoShoot">拍照</el-button>
            <el-alert
                :title="httpsAlert"
                type="info"
                :closable="false"
                v-show="httpsAlert !== ''">
            </el-alert>
            <div class="videoImage" ref="faceBox">
                <video ref="video" ></video>
                <canvas ref="canvas" width="400" height="400" v-show="videoShow"></canvas>
                <img ref="image" :src="picture" alt="" v-show="pictureShow">
            </div>
        </div>
    </template>

    第三步 可以开始代码了

    首先引入下载好的face-api.js包

    import * as faceApi from 'face-api.js'

     以下是需要用到的属性

    1、视频和图片不同时出现

    videoShow: false,
    pictureShow: false,

    2、生成图片后用于保存图片路径

    picture: '',

    3、因为在操作时会用到DOM所以将要用到虚拟DOM保存在data中

    canvas: null,
    video: null,
    image: null,

     4、模型识别时直接传入此属性,在初始化时赋值(可省略,直接卸载逻辑代码中)

    options: ''

     5、在人脸识别时对结果进行反馈(识别出人像数量大于1或小于1时给出提示)

    noOne: '',
    moreThanOne: '',

    6、如果用户不是在https下进行使用摄像头调用给出提示

    httpsAlert: ''

    属性准备好之后就可以开始初始化了

    1、初始化模型

    2、获取需要用到的虚拟DOM

    async init() {
        await faceApi.nets.ssdMobilenetv1.loadFromUri("/models");
        await faceApi.loadFaceLandmarkModel("/models");
        this.options = new faceApi.SsdMobilenetv1Options({
            minConfidence: 0.5, // 0.1 ~ 0.9
        });
        // 视频中识别使用的节点
        this.video = this.$refs.video
        this.canvas = this.$refs.canvas
        this.image = this.$refs.image
    }

    调用摄像头

    通过navigator.mediaDevices.getUserMedia()

    useCamera(){
        this.videoShow = true
        this.pictureShow = false
        this.cameraOptions()
    },
    cameraOptions(){
        let constraints = {
            video: {
                width: 400,
                height: 400
            }
        }
        // 如果不是通过loacalhost或者通过https访问会将报错捕获并提示
        try{
            let promise = navigator.mediaDevices.getUserMedia(constraints);
            promise.then((MediaStream) => {
                // 返回参数
                this.video.srcObject = MediaStream;
                this.video.play();
                this.recognizeFace()
            }).catch((error) => {
                console.log(error);
            });
        }catch(err){
            this.httpsAlert = `您现在在使用非Https访问,
            请先在chrome://flags/#unsafely-treat-insecure-origin-as-secure中修改配置,
            添将当前链接${window.location.href}添加到列表,
            并且将Insecure origins treated as secure修改为enabled,
            修改完成后请重启浏览器后再次访问!`
        }
    }

    识别视频中的人像

    这里通过递归的方式将视频中的内容用canvas显示

    将canvas的节点传入到faceApi的方法中进行识别

    通过faceApi返回的数组可以得到当前人脸的识别状况(数组长度0没有识别到人脸,长度1识别到一个人脸...以此类推)

    async recognizeFace(){
        if (this.video.paused) return clearTimeout(this.timeout);
        this.canvas.getContext('2d', { willReadFrequently: true }).drawImage(this.video, 0, 0, 400, 400);
        const results = await faceApi.detectAllFaces(this.canvas, this.options).withFaceLandmarks();
        if(results.length === 0){
            if(this.moreThanOne !== ''){
                this.moreThanOne.close()
                this.moreThanOne = ''
            }
            if(this.noOne === ''){
                this.noOne = this.$message({
                    message: '未识别到人脸',
                    type: 'warning',
                    duration: 0
                });
            }
        }else if(results.length > 1){
            if(this.noOne !== ''){
                this.noOne.close()
                this.noOne = ''
            }
            if(this.moreThanOne === ''){
                this.moreThanOne = this.$message({
                    message: '检测到镜头中有多个人',
                    type: 'warning',
                    duration: 0
                });
            }
        }else{
            if(this.noOne !== ''){
                this.noOne.close()
                this.noOne = ''
            }
            if(this.moreThanOne !== ''){
                this.moreThanOne.close()
                this.moreThanOne = ''
            }
        }
        this.timeout = setTimeout(() => {
            return this.recognizeFace()
        });
    },

    拍照上传 

    async photoShoot(){
        // 拿到图片的base64
        let canvas = this.canvas.toDataURL("image/png");
        // 拍照以后将video隐藏
        this.videoShow = false
        this.pictureShow = true
        // 停止摄像头成像
        this.video.srcObject.getTracks()[0].stop()
        this.video.pause()
        if(canvas) {
            // 拍照将base64转为file流文件
            let blob = this.dataURLtoBlob(canvas);
            let file = this.blobToFile(blob, "imgName");
            // 将blob图片转化路径图片
            let image = window.URL.createObjectURL(file)
            this.picture = image
            return
            let formData = new FormData()
            formData.append('file', this.picture)
            axios({
                method: 'post',
                url: '/user/12345',
                data: formData
            }).then(res => {
                console.log(res)
            }).catch(err => {
                console.log(err)
            })
        } else {
            console.log('canvas生成失败')
        }
    },

    需要用到的图片格式转换方法 

    方法1:先将base64转为文件

    方法2:设置新的文件中的参数信息

    dataURLtoBlob(dataurl) {
        let arr = dataurl.split(','),
            mime = arr[0].match(/:(.*?);/)[1],
            bstr = atob(arr[1]),
            n = bstr.length,
            u8arr = new Uint8Array(n);
        while(n--) {
            u8arr[n] = bstr.charCodeAt(n);
        }
        return new Blob([u8arr], {
            type: mime
        });
    },
    blobToFile(theBlob, fileName) {
        theBlob.lastModifiedDate = new Date().toLocaleDateString();
        theBlob.name = fileName;
        return theBlob;
    },

    完整代码

    import bingImage from '@/assets/bbt1.jpg';
    import BingWallpaper from '@/assets/BingWallpaper.jpg';
    import * as faceApi from 'face-api.js'
    export default {
        name: 'Recognize',
        data(){
            return{
                videoShow: false,
                pictureShow: false,
                // 图片地址
                picture: '',
                // 用于视频识别的节点
                canvas: null,
                video: null,
                image: null,
                timeout: 0,
                // 模型识别的条件
                options: '',
                // 提示控制
                noOne: '',
                moreThanOne: '',
                // 不是通过Https访问提示
                httpsAlert: '',
            }
        },
        mounted() {
            // 初始化
            this.init()
        },
        beforeDestroy() {
            clearTimeout(this.timeout);
        },
        methods: {
            async init() {
                await faceApi.nets.ssdMobilenetv1.loadFromUri("/models");
                await faceApi.loadFaceLandmarkModel("/models");
                this.options = new faceApi.SsdMobilenetv1Options({
                    minConfidence: 0.5, // 0.1 ~ 0.9
                });
                // 视频中识别使用的节点
                this.video = this.$refs.video
                this.canvas = this.$refs.canvas
                this.image = this.$refs.image
            },
            /**
             * 使用视频来成像摄像头
             */
            useCamera(){
                this.videoShow = true
                this.pictureShow = false
                this.cameraOptions()
            },
            /**
             * 使用摄像头
             */
            cameraOptions(){
                let constraints = {
                    video: {
                        width: 400,
                        height: 400
                    }
                }
                // 如果不是通过loacalhost或者通过https访问会将报错捕获并提示
                try{
                    let promise = navigator.mediaDevices.getUserMedia(constraints);
                    promise.then((MediaStream) => {
                        // 返回参数
                        this.video.srcObject = MediaStream;
                        this.video.play();
                        this.recognizeFace()
                    }).catch((error) => {
                        console.log(error);
                    });
                }catch(err){
                    this.httpsAlert = `您现在在使用非Https访问,
                    请先在chrome://flags/#unsafely-treat-insecure-origin-as-secure中修改配置,
                    添将当前链接${window.location.href}添加到列表,
                    并且将Insecure origins treated as secure修改为enabled,
                    修改完成后请重启浏览器后再次访问!`
                }
            },
            /**
             * 人脸识别方法
             * 通过canvas节点识别
             * 节点对象执行递归识别绘制
             */
            async recognizeFace(){
                if (this.video.paused) return clearTimeout(this.timeout);
                this.canvas.getContext('2d', { willReadFrequently: true }).drawImage(this.video, 0, 0, 400, 400);
                const results = await faceApi.detectAllFaces(this.canvas, this.options).withFaceLandmarks();
                if(results.length === 0){
                    if(this.moreThanOne !== ''){
                        this.moreThanOne.close()
                        this.moreThanOne = ''
                    }
                    if(this.noOne === ''){
                        this.noOne = this.$message({
                            message: '未识别到人脸',
                            type: 'warning',
                            duration: 0
                        });
                    }
                }else if(results.length > 1){
                    if(this.noOne !== ''){
                        this.noOne.close()
                        this.noOne = ''
                    }
                    if(this.moreThanOne === ''){
                        this.moreThanOne = this.$message({
                            message: '检测到镜头中有多个人',
                            type: 'warning',
                            duration: 0
                        });
                    }
                }else{
                    if(this.noOne !== ''){
                        this.noOne.close()
                        this.noOne = ''
                    }
                    if(this.moreThanOne !== ''){
                        this.moreThanOne.close()
                        this.moreThanOne = ''
                    }
                }
                // 通过canvas显示video信息
                this.timeout = setTimeout(() => {
                    return this.recognizeFace()
                });
            },
            /**
             * 拍照上传
             */
            async photoShoot(){
                // 拿到图片的base64
                let canvas = this.canvas.toDataURL("image/png");
                // 拍照以后将video隐藏
                this.videoShow = false
                this.pictureShow = true
                // 停止摄像头成像
                this.video.srcObject.getTracks()[0].stop()
                this.video.pause()
                if(canvas) {
                    // 拍照将base64转为file流文件
                    let blob = this.dataURLtoBlob(canvas);
                    console.log(blob)
                    let file = this.blobToFile(blob, "imgName");
                    console.info(file);
                    // 将blob图片转化路径图片
                    let image = window.URL.createObjectURL(file)
                    this.picture = image
                    // 将拍照后的图片发送给后端
                    let formData = new FormData()
                    formData.append('file', this.picture)
                    axios({
                        method: 'post',
                        url: '/user/12345',
                        data: formData
                    }).then(res => {
                        console.log(res)
                    }).catch(err => {
                        console.log(err)
                    })
                } else {
                    console.log('canvas生成失败')
                }
            },
            /**
             * 将图片转为blob格式
             * dataurl 拿到的base64的数据
             */
            dataURLtoBlob(dataurl) {
                let arr = dataurl.split(','),
                    mime = arr[0].match(/:(.*?);/)[1],
                    bstr = atob(arr[1]),
                    n = bstr.length,
                    u8arr = new Uint8Array(n);
                while(n--) {
                    u8arr[n] = bstr.charCodeAt(n);
                }
                return new Blob([u8arr], {
                    type: mime
                });
            },
            /**
             * 生成文件信息
             * theBlob 文件
             * fileName 文件名字
             */
            blobToFile(theBlob, fileName) {
                theBlob.lastModifiedDate = new Date().toLocaleDateString();
                theBlob.name = fileName;
                return theBlob;
            },
        }
    }

    感谢各位的阅读,以上就是“怎么使用VUE+faceApi.js实现摄像头拍摄人脸识别”的内容了,经过本文的学习后,相信大家对怎么使用VUE+faceApi.js实现摄像头拍摄人脸识别这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!

    向AI问一下细节

    免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

    vue
    AI