在Web爬虫反爬虫策略应对中,Python库函数可以帮助我们实现各种策略,以下是一些常见的库和函数:
import requests
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
}
url = "https://example.com"
response = requests.get(url, headers=headers)
from bs4 import BeautifulSoup
soup = BeautifulSoup(response.text, "html.parser")
title = soup.title.string
from selenium import webdriver
driver = webdriver.Chrome()
driver.get(url)
# 等待JavaScript加载完成
time.sleep(5)
# 使用BeautifulSoup解析页面内容
soup = BeautifulSoup(driver.page_source, "html.parser")
title = soup.title.string
driver.quit()
free-proxy
、proxybroker
等。同时,我们还可以构建自己的代理池来管理和维护代理IP。import requests
from fake_useragent import UserAgent
from proxybroker import Broker
proxies = []
def collect_proxies():
broker = Broker(max_conn=10, max_tries=3, timeout=10)
for proxy in broker.find(types=['HTTP', 'HTTPS'], countries=['US', 'CA']):
proxies.append(proxy)
collect_proxies()
ua = UserAgent()
headers = {"User-Agent": ua.random}
for proxy in proxies:
try:
response = requests.get(url, headers=headers, proxies={"http": proxy}, timeout=10)
if response.status_code == 200:
print("Successfully accessed the website using proxy:", proxy)
break
except Exception as e:
print("Failed to access the website using proxy:", proxy)
time.sleep()
函数实现。import time
time.sleep(5) # 等待5秒
通过以上方法,我们可以在Web爬虫反爬虫策略应对中使用Python库函数来实现各种策略,提高爬虫的成功率。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。