本篇博客将详细探讨DStream模板下的RDD是如何被创建,然后被执行的。在开始叙述之前,先来思考几个问题,本篇文章也就是基于此问题构建的。
1. RDD是谁产生的?
2. 如何产生RDD?
带着这两个问题开启我们的探索之旅。
DStream是RDD的模板,每隔一个Batch Interval会根据DStream模板生成一个对应的RDD,然后将RDD存储到DStream中的generatedRDDs数据结构中,下面是存储结构格式。
// RDDs generated, marked as private[streaming] so that testsuites can access it
@transient
private[streaming] var generatedRDDs = new HashMap[Time, RDD[T]] ()
1、简单的WordCount程序
object WordCount { def main(args:Array[String]): Unit ={
val sparkConf = new SparkConf().setMaster("Master:7077").setAppName("WordCount")
val ssc = new StreamingContext(sparkConf,Seconds(10)) // Timer触发频率
val lines = ssc.socketTextStream("Master",9999) //接收数据
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x,1)).reduceByKey(_+_)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
}
}
首先我们先看看print方法,具体的代码如下:
/** * Print the first num elements of each RDD generated in this DStream. This is an output * operator, so this DStream will be registered as an output stream and there materialized. */def print(num: Int): Unit = ssc.withScope { def foreachFunc: (RDD[T], Time) => Unit = { (rdd: RDD[T], time: Time) => { val firstNum = rdd.take(num + 1) // scalastyle:off println println("-------------------------------------------") println("Time: " + time) println("-------------------------------------------") firstNum.take(num).foreach(println) if (firstNum.length > num) println("...") println() // scalastyle:on println } } foreachRDD(context.sparkContext.clean(foreachFunc), displayInnerRDDOps = false)}
首先定义了一个函数,该函数用来从RDD中取出前几条数据,并打印出结果与时间等,后面会调用foreachRDD函数。
private def foreachRDD( foreachFunc: (RDD[T], Time) => Unit, displayInnerRDDOps: Boolean): Unit = { new ForEachDStream(this,context.sparkContext.clean(foreachFunc, false), displayInnerRDDOps).register()}
/** * Register this streaming as an output stream. This would ensure that RDDs of this * DStream will be generated. */private[streaming] def register(): DStream[T] = { ssc.graph.addOutputStream(this) this}
def addOutputStream(outputStream: DStream[_]) { this.synchronized { outputStream.setGraph(this) outputStreams += outputStream }
在foreachRDD中new出了一个ForEachDStream对象,并将这个注册给DStreamGraph,ForEachDStream对象也就是DStreamGraph中的outputStreams。
当每到达一个BatchInterval时候,就会调用DStreamingGraph中的generateJobs.
def generateJobs(time: Time): Seq[Job] = { logDebug("Generating jobs for time " + time) val jobs = this.synchronized { outputStreams.flatMap { outputStream => val jobOption = outputStream.generateJob(time) jobOption.foreach(_.setCallSite(outputStream.creationSite)) jobOption } } logDebug("Generated " + jobs.length + " jobs for time " + time) jobs}
这里就会调用outputStream的generateJob方法
private[streaming] def generateJob(time: Time): Option[Job] = { getOrCompute(time) match { case Some(rdd) => { val jobFunc = () => { val emptyFunc = { (iterator: Iterator[T]) => {} } context.sparkContext.runJob(rdd, emptyFunc) } Some(new Job(time, jobFunc)) } case None => None }}
这里会调用getOrCompute(time)来产生新RDD,并将其存入到generatedRDDs中,整理的过程如下图:
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。