在进行Python爬虫优化时,可以从多个方面入手,包括代码结构、请求速度、解析速度、存储速度和异常处理等。以下是一些具体的优化建议:
requests
库结合concurrent.futures
模块(如ThreadPoolExecutor
或ProcessPoolExecutor
)进行并发请求,提高请求速度。import requests
from concurrent.futures import ThreadPoolExecutor
def fetch(url):
response = requests.get(url)
return response.text
urls = ['http://example.com'] * 10
with ThreadPoolExecutor(max_workers=10) as executor:
results = list(executor.map(fetch, urls))
lxml
或BeautifulSoup
,它们比Python内置的html.parser
更快。from lxml import html
import requests
url = 'http://example.com'
response = requests.get(url)
tree = html.fromstring(response.content)
title = tree.xpath('//title/text()')[0]
Redis
)来存储,减少重复请求。try-except
块捕获异常,避免程序崩溃。import requests
from requests.exceptions import RequestException
def fetch_with_retry(url, retries=3):
for i in range(retries):
try:
response = requests.get(url)
response.raise_for_status()
return response.text
except RequestException as e:
if i == retries - 1:
raise e
time.sleep(2 ** i)
通过以上优化措施,可以显著提高Python爬虫的性能和稳定性。