温馨提示×

在Keras中如何处理缺失值

小樊
86
2024-04-23 14:18:46
栏目: 深度学习
开发者测试专用服务器限时活动,0元免费领,库存有限,领完即止! 点击查看>>

在Keras中处理缺失值通常需要在数据准备阶段进行处理。以下是一些处理缺失值的方法:

  1. 删除包含缺失值的样本:可以通过使用dropna()方法来删除包含缺失值的样本。
import pandas as pd

# 删除包含缺失值的样本
data = data.dropna()
  1. 填充缺失值:可以使用fillna()方法来填充缺失值。
# 使用平均值填充缺失值
data.fillna(data.mean(), inplace=True)
  1. 使用Keras的SimpleImputer类来填充缺失值:
from keras.preprocessing import imputation

imputer = imputation.SimpleImputer(missing_values=np.nan, strategy='mean')
data = imputer.fit_transform(data)

在选择处理缺失值的方法时,需要根据数据的特点和具体情况来选择合适的方法。

亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>

推荐阅读:Keras中如何处理缺失值

0