温馨提示×

在Keras中,如何创建一个简单的全连接神经网络

小樊
91
2024-03-07 18:07:23
栏目: 深度学习
开发者测试专用服务器限时活动,0元免费领,库存有限,领完即止! 点击查看>>

在Keras中,可以通过Sequential模型来创建一个简单的全连接神经网络。以下是一个例子:

from keras.models import Sequential
from keras.layers import Dense

# 创建一个Sequential模型
model = Sequential()

# 添加输入层和隐藏层
model.add(Dense(units=64, activation='relu', input_dim=100))

# 添加输出层
model.add(Dense(units=10, activation='softmax'))

# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32)

在这个例子中,我们创建了一个包含一个输入层,一个隐藏层和一个输出层的全连接神经网络。输入层有100个特征,隐藏层有64个神经元并使用ReLU激活函数,输出层有10个神经元并使用softmax激活函数。我们使用adam优化器和交叉熵损失函数来编译模型,并训练模型10个epochs。

亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>

推荐阅读:Keras中怎么创建一个简单的全连接神经网络

0