温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

使用Keras查看model weights.h5文件内容的实现方法

发布时间:2020-07-18 17:53:10 来源:亿速云 阅读:378 作者:小猪 栏目:开发技术

这篇文章主要讲解了使用Keras查看model weights.h5文件内容的实现方法,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。

Keras的模型是用hdf5存储的,如果想要查看模型,keras提供了get_weights的函数可以查看:

for layer in model.layers: weights = layer.get_weights() # list of numpy array

而通过hdf5模块也可以读取:hdf5的数据结构主要是File - Group - Dataset三级,具体操作API可以看官方文档。weights的tensor保存在Dataset的value中,而每一集都会有attrs保存各网络层的属性:

import h6py
 
def print_keras_wegiths(weight_file_path):
  f = h6py.File(weight_file_path) # 读取weights h6文件返回File类
  try:
    if len(f.attrs.items()):
      print("{} contains: ".format(weight_file_path))
      print("Root attributes:")
    for key, value in f.attrs.items():
      print(" {}: {}".format(key, value)) # 输出储存在File类中的attrs信息,一般是各层的名称
 
    for layer, g in f.items(): # 读取各层的名称以及包含层信息的Group类
      print(" {}".format(layer))
      print("  Attributes:")
      for key, value in g.attrs.items(): # 输出储存在Group类中的attrs信息,一般是各层的weights和bias及他们的名称
        print("   {}: {}".format(key, value)) 
 
      print("  Dataset:")
      for name, d in g.items(): # 读取各层储存具体信息的Dataset类
        print("   {}: {}".format(name, d.value.shape)) # 输出储存在Dataset中的层名称和权重,也可以打印dataset的attrs,但是keras中是空的
        print("   {}: {}".format(name. d.value))
  finally:
    f.close()

而如果想修改某个值,则需要通过新建File类,然后用create_group, create_dataset函数将信息重新写入,具体操作可以查看这篇文章

补充知识:keras load model 并保存特定层 (pop) 的权重save new_model

有时候我们保存模型(save model),会保存整个模型输入到输出的权重,如果,我们不想保存后几层的参数,保存成新的模型。

import keras
from keras.models import Model, load_model
from keras.layers import Input, Dense
from keras.optimizers import RMSprop
import numpy as np

创建原始模型并保存权重

inputs = Input((1,))
dense_1 = Dense(10, activation='relu')(inputs)
dense_2 = Dense(10, activation='relu')(dense_1)
dense_3 = Dense(10, activation='relu')(dense_2)
outputs = Dense(10)(dense_3)

model = Model(inputs=inputs, outputs=outputs)
model.compile(optimizer=RMSprop(), loss='mse')
model.save('test.h6')

加载模型并对模型进行调整

loaded_model = load_model('test.h6')
loaded_model.layers.pop()
loaded_model.layers.pop()

此处去掉了最后两层--dense_3, dense_2。

创建新的model并加载修改后的模型

new_model = Model(inputs=inputs, outputs=dense_1)
new_model.compile(optimizer=RMSprop(), loss='mse')
new_model.set_weights(loaded_model.get_weights())

new_model.summary()
new_model.save('test_complete.h6')

看完上述内容,是不是对使用Keras查看model weights.h5文件内容的实现方法有进一步的了解,如果还想学习更多内容,欢迎关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI