温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何使用pandas dataframe中的explode函数

发布时间:2020-07-23 15:40:54 来源:亿速云 阅读:790 作者:小猪 栏目:开发技术

这篇文章主要讲解了如何使用pandas dataframe中的explode函数,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。

在使用 pandas 进行数据分析的过程中,我们常常会遇到将一行数据展开成多行的需求,多么希望能有一个类似于 hive sql 中的 explode 函数。

这个函数如下:

Code

# !/usr/bin/env python
# -*- coding:utf-8 -*-
# create on 18/4/13
import pandas as pd

def dataframe_explode(dataframe, fieldname): 
 temp_fieldname = fieldname + '_made_tuple_' 
 dataframe[temp_fieldname] = dataframe[fieldname].apply(tuple)  
 list_of_dataframes = []
 for values in dataframe[temp_fieldname].unique().tolist(): 
  list_of_dataframes.append(pd.DataFrame({
   temp_fieldname: [values] * len(values), 
   fieldname: list(values), 
  }))
 dataframe = dataframe[list(set(dataframe.columns) - set([fieldname]))].merge(pd.concat(list_of_dataframes), how='left', on=temp_fieldname) 
 del dataframe[temp_fieldname]
 return dataframe

df = pd.DataFrame({'listcol':[[1,2,3],[4,5,6]], "aa": [222,333]})
df = dataframe_explode(df, "listcol")

Description

将 dataframe 按照某一指定列进行展开,使得原来的每一行展开成一行或多行。( 注:该列可迭代, 例如list, tuple, set)

补充知识:Pandas列中的字典/列表拆分为单独的列

我就废话不多说了,大家还是直接看代码吧

[1] df
Station ID  Pollutants
8809   {"a": "46", "b": "3", "c": "12"}
8810   {"a": "36", "b": "5", "c": "8"}
8811   {"b": "2", "c": "7"}
8812   {"c": "11"}
8813   {"a": "82", "c": "15"}

Method 1:

step 1: convert the Pollutants column to Pandas dataframe series

df_pol_ps = data_df['Pollutants'].apply(pd.Series)

df_pol_ps:
 a b c
0 46 3 12
1 36 5 8
2 NaN 2 7
3 NaN NaN 11
4 82 NaN 15

step 2: concat columns a, b, c and drop/remove the Pollutants

df_final = pd.concat([df, df_pol_ps], axis = 1).drop('Pollutants', axis = 1)

df_final:
 StationID a b c
0 8809 46 3 12
1 8810 36 5 8
2 8811 NaN 2 7
3 8812 NaN NaN 11
4 8813 82 NaN 15

Method 2:

df_final = pd.concat([df, df['Pollutants'].apply(pd.Series)], axis = 1).drop('Pollutants', axis = 1)

df_final:
 StationID a b c
0 8809 46 3 12
1 8810 36 5 8
2 8811 NaN 2 7
3 8812 NaN NaN 11
4 8813 82 NaN 15

看完上述内容,是不是对如何使用pandas dataframe中的explode函数有进一步的了解,如果还想学习更多内容,欢迎关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI