温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何解决基于python等频分箱qcut的问题

发布时间:2021-07-29 09:01:55 来源:亿速云 阅读:148 作者:小新 栏目:开发技术

小编给大家分享一下如何解决基于python等频分箱qcut的问题,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!

在python 较新的版本中,pandas.qcut()这个函数中是有duplicates这个参数的,它能解决在等频分箱中遇到的重复值过多引起报错的问题;

在比较旧版本的python中,提供一下解决办法:

import pandas as pd
 
def pct_rank_qcut(series, n):
  '''
  series:要分箱的列
  n:箱子数
  '''
  edages = pd.series([i/n for i in range(n)] # 转换成百分比
  func = lambda x: (edages >= x).argmax() #函数:(edages >= x)返回fasle/true列表中第一次出现true的索引值
  return series.rank(pct=1).astype(float).apply(func) #series.rank(pct=1)每个值对应的百分位数,最终返回对应的组数;rank()函数传入的数据类型若为object,结果会有问题,因此进行了astype

补充拓展:Python数据离散化:等宽及等频

在处理数据时,我们往往需要将连续性变量进行离散化,最常用的方式便是等宽离散化,等频离散化,在此处我们讨论离散化的概念,只给出在python中的实现以供参考

1. 等宽离散化

使用pandas中的cut()函数进行划分

import numpy as np
import pandas as pd
 
# Discretization: Equal Width #
# Datas: Sample * Feature
def Discretization_EqualWidth(K, Datas, FeatureNumber):
  DisDatas = np.zeros_like(Datas)
  for i in range(FeatureNumber):
    DisOneFeature = pd.cut(Datas[:, i], K, labels=range(1, K+1))
    DisDatas[:, i] = DisOneFeature
  return DisDatas

2. 等频离散化

pandas中有qcut()可以使用,但是边界易出现重复值,如果为了删除重复值设置 duplicates=‘drop',则易出现于分片个数少于指定个数的问题,因此在此处不使用qcut()

import numpy as np
import pandas as pd
 
# Discretization: Equal Frequency #
# vector: single feature
def Rank_qcut(vector, K):
  quantile = np.array([float(i) / K for i in range(K + 1)]) # Quantile: K+1 values
  funBounder = lambda x: (quantile >= x).argmax()
  return vector.rank(pct=True).apply(funBounder)
 
# Discretization: Equal Frequency #
# Datas: Sample * Feature
def Discretization_EqualFrequency(K, Datas, FeatureNumber):
  DisDatas = np.zeros_like(Datas)
  w = [float(i) / K for i in range(K + 1)]
  for i in range(FeatureNumber):
    DisOneFeature = Rank_qcut(pd.Series(Datas[:, i]), K)
    #print(DisOneFeature)
    DisDatas[:, i] = DisOneFeature
  return DisDatas

看完了这篇文章,相信你对“如何解决基于python等频分箱qcut的问题”有了一定的了解,如果想了解更多相关知识,欢迎关注亿速云行业资讯频道,感谢各位的阅读!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI