本篇内容主要讲解“Python分析包中的qcut怎么用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python分析包中的qcut怎么用”吧!
它的作用是根据值的频率来决定箱子的间隔,尽可能地满足样本在每个箱子的数量相等。
先看例子:
ages = np.array([5,10,36,12,77,89,100,30,1]) #年龄数据pd.qcut(ages, 3, labels=['青','中','老']).value_counts()#结果:青 3中 3老 3dtype: int64
可以看到,每个区间的样本数量都为3. 不过,qcut得到的三个区间长度就不一定相等了。这是和 cut 的最大区别,cut 切分的是等长区间。
# 这是qcut后到得到的三个区间:Categories(3, interval[float64]): [(0.999, 11.333] < (11.333, 49.667] < (49.667, 100.0]]
很明显,区间长度是不等的。
到此,相信大家对“Python分析包中的qcut怎么用”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
原文链接:https://my.oschina.net/u/4585819/blog/4583505