这篇文章主要介绍pytorch如何使用加载训练好的模型做inference,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
1、 构建模型(# load model graph)
model = MODEL()
2、加载模型参数(# load model state_dict)
model.load_state_dict ( { k.replace('module.',''):v for k,v in torch.load(config.model_path, map_location=config.device).items() } ) model = self.model.to(config.device) * config.device 指定使用哪块GPU或者CPU *k.replace('module.',''):v 防止torch.DataParallel训练的模型出现加载错误
(解决RuntimeError: module must have its parameters and buffers on device cuda:0 (device_ids[0]) but found one of them on device: cuda:1问题)
3、设置当前阶段为inference(# predict)
model.eval()
以上是“pytorch如何使用加载训练好的模型做inference”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。