这篇文章给大家介绍Camshift算法怎么在OpenCV项目中使用,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
前面学习过Meanshift算法,在观察这个结果标记时,会发现有这样一个Camshift函数返回两个值,第一个值ret是一个旋转的窗口,第二个值是窗口搜索位置给下一次搜索使用的。例子如下:
import numpy as np import cv2 from matplotlib import pyplot as plt capture = cv2.VideoCapture(1) if not capture.isOpened: print('Unable to open: ') exit(0) #获取第一帧图片 ret,frame = capture.read() #设置目标窗口 #读取文件 find = cv2.imread('luohu1.png') h,w = find.shape[:2] roi = find[10: 120, 10: 120] x = 10 y = 10 width = 120 - x height = 120 - y track_window = (x, y, w, h) print(track_window) #跟踪目标 hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.))) roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180]) #计算直方图 cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX) #设置迭代条件,每10移动一点 term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 ) while(1): ret, frame = capture.read() if ret == True: hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)#反向投影 #使用 meanshift获得新位置 ret, track_window = cv2.CamShift(dst, track_window, term_crit) #显示标记 pts = cv2.boxPoints(ret) pts = np.int0(pts) img2 = cv2.polylines(frame,[pts],True, (255,0,0),2) cv2.imshow('img2',img2) cv2.imshow("dst", dst) cv2.imshow("roi", roi) keyboard = cv2.waitKey(1) if keyboard == ord('q') or keyboard == ord('Q'): break else: break capture.release() cv2.destroyAllWindows()
关于Camshift算法怎么在OpenCV项目中使用就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。