温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何使用python时间序列按频率生成日期

发布时间:2021-06-24 13:55:44 来源:亿速云 阅读:125 作者:小新 栏目:开发技术

这篇文章将为大家详细讲解有关如何使用python时间序列按频率生成日期,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

1.生成指定开始日期和结束日期的时间范围:

In:import pandas as pd
	index = pd.date_range('4/1/2019','5/1/2019')
	print(index)
Out:
DatetimeIndex(['2019-04-01', '2019-04-02', '2019-04-03', '2019-04-04',
        '2019-04-05', '2019-04-06', '2019-04-07', '2019-04-08',
        '2019-04-09', '2019-04-10', '2019-04-11', '2019-04-12',
        '2019-04-13', '2019-04-14', '2019-04-15', '2019-04-16',
        '2019-04-17', '2019-04-18', '2019-04-19', '2019-04-20',
        '2019-04-21', '2019-04-22', '2019-04-23', '2019-04-24',
        '2019-04-25', '2019-04-26', '2019-04-27', '2019-04-28',
        '2019-04-29', '2019-04-30', '2019-05-01'],
       dtype='datetime64[ns]', freq='D')

也可以只指定开始日期或结束日期,但这时必须要输入一个时间长度,并且指定输入的是开始时间还是结束时间,如果不指定默认是开始时间。

date_range(startdate/enddate,periods)

In:print(pd.date_range(start = '4/1/2019',periods = 10))
Out:DatetimeIndex(['2019-04-01', '2019-04-02', '2019-04-03', '2019-04-04',
        '2019-04-05', '2019-04-06', '2019-04-07', '2019-04-08',
        '2019-04-09', '2019-04-10'],
       dtype='datetime64[ns]', freq='D')
In:print(pd.date_range(start = '5/1/2019',periods = 10))
Out:DatetimeIndex(['2019-05-01', '2019-05-02', '2019-05-03', '2019-05-04',
          '2019-05-05', '2019-05-06', '2019-05-07', '2019-05-08',
          '2019-05-09', '2019-05-10'],
         dtype='datetime64[ns]', freq='D')

现在我们已经知道怎么生成日期范围了,但是上面我们生成的日期的时间间隔都是天,接下来告诉大家怎么生成其他时间频率的日期范围。

要生成按某个频率计算的日期范围,只需要在date_range后加上freq就可以了。比如,生成每小时间隔的时间:

In:print(pd.date_range(start = '5/1/2019',periods = 10,freq = 'h'))
Out:DatetimeIndex(['2019-05-01 00:00:00', '2019-05-01 01:00:00',
        '2019-05-01 02:00:00', '2019-05-01 03:00:00',
        '2019-05-01 04:00:00', '2019-05-01 05:00:00',
        '2019-05-01 06:00:00', '2019-05-01 07:00:00',
        '2019-05-01 08:00:00', '2019-05-01 09:00:00'],
       dtype='datetime64[ns]', freq='H')

生成时间间隔为3个小时的时间:

In:print(pd.date_range(start = '5/1/2019',periods = 10,freq = '3h'))
Out:DatetimeIndex(['2019-05-01 00:00:00', '2019-05-01 01:00:00',
        '2019-05-01 02:00:00', '2019-05-01 03:00:00',
        '2019-05-01 04:00:00', '2019-05-01 05:00:00',
        '2019-05-01 06:00:00', '2019-05-01 07:00:00',
        '2019-05-01 08:00:00', '2019-05-01 09:00:00'],
       dtype='datetime64[ns]', freq='H')

生成时间间隔为1小时30分的时间:

In:print(pd.date_range(start = '5/1/2019',periods = 10,freq = '1h40min'))
Out:DatetimeIndex(['2019-05-01 00:00:00', '2019-05-01 01:30:00',
        '2019-05-01 03:00:00', '2019-05-01 04:30:00',
        '2019-05-01 06:00:00', '2019-05-01 07:30:00',
        '2019-05-01 09:00:00', '2019-05-01 10:30:00',
        '2019-05-01 12:00:00', '2019-05-01 13:30:00'],
       dtype='datetime64[ns]', freq='90T')

python还可以生成其他不规则频率的时间,比如每月的第一个工作日,每月的第一个日历日等

生成每月的第一个工作日:

In:print(pd.date_range(start = '1/1/2019',periods = 12,freq = 'BMS'))
Out:DatetimeIndex(['2019-01-01', '2019-02-01', '2019-03-01', '2019-04-01',
        '2019-05-01', '2019-06-03', '2019-07-01', '2019-08-01',
        '2019-09-02', '2019-10-01', '2019-11-01', '2019-12-02'],
       dtype='datetime64[ns]', freq='BMS')

生成每月的第一个日历日:

In:print(pd.date_range(start = '1/1/2019',periods = 12,freq = 'MS'))
Out:DatetimeIndex(['2019-01-01', '2019-02-01', '2019-03-01', '2019-04-01',
        '2019-05-01', '2019-06-01', '2019-07-01', '2019-08-01',
        '2019-09-01', '2019-10-01', '2019-11-01', '2019-12-01'],
       dtype='datetime64[ns]', freq='MS')

有一种很实用的频率类,为“WOM”,即每月的几个星期几。比如每月的第三个星期五。如果我们每月的第三个星期五发工资,这样就可以很方便的知道今年每个月的工资日了。

In:print(pd.date_range(start = '1/1/2019',periods = 12,freq = 'WOM-3FRI'))
Out:DatetimeIndex(['2019-01-18', '2019-02-15', '2019-03-15', '2019-04-19',
        '2019-05-17', '2019-06-21', '2019-07-19', '2019-08-16',
        '2019-09-20', '2019-10-18', '2019-11-15', '2019-12-20'],
       dtype='datetime64[ns]', freq='WOM-3FRI')

下面是python可使用的时间序列的基础频率表:

别名偏移量类型说明
DDay每日历日
BBusinessDay每工作日
HHour每小时
T或minMinute每分钟
SSecond每秒
L或msMilli每毫秒
UMicro每微秒
MMonthEnd每月最后一个日历日
BMBusinessMonthEnd每月最后一个工作日
MSMonthBegin每月第一个日历日
BMSBusinessMonthBegin每月第一个工作日
W-MON、W-TUEWeek每周的星期几
WOM-1MON、WOM-2MONWeekofMonth每月第几周的星期几
Q-JAN、Q-FEBQuarterEnd每个季度对应的该月份的最后一个日历日
BQ-JAN、BQ-FEBBusinessQuarterEnd每个季度对应的该月份的最后一个工作日
QS-JAN、QS-FEBQuarterBegin每个季度对应的该月份的第一个日历日
BQS-JAN、BQS-FEBQuarterBegin每个季度对应的该月份的第一个工作日
A-JAN、B-FEBYearEnd每年指定月份的最后一个日历日
BA-JAN、BA-FEBBusinessYearEnd每年指定月份的最后一个工作日
AS-JAN、AS-FEBYearBegin每年指定月份的第一个日历日
BAS-JAN、BAS-FEBBusinessYearBegin每年指定月份的第一个工作日

关于“如何使用python时间序列按频率生成日期”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI