这篇文章将为大家详细讲解有关multiprocessing Pool怎么在Python中使用,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。
python常用的库:1.requesuts;2.scrapy;3.pillow;4.twisted;5.numpy;6.matplotlib;7.pygama;8.ipyhton等。
1. 背景
由于需要写python程序, 定时、大量发送htttp请求,并对结果进行处理。
参考其他代码有进程池,记录一下。
2. 多进程 vs 多线程
c++程序中,单个模块通常是单进程,会启动几十、上百个线程,充分发挥机器性能。(目前c++11有了std::thread编程多线程很方便,可以参考我之前的博客)
shell脚本中,都是多进程后台执行。({ ...} &, 可以参考我之前的博客,实现shell并发处理任务)
python脚本有多线程和多进程。由于python全局解锁锁的GIL的存在,一般建议 CPU密集型应该采用多进程充分发挥多核优势,I/O密集型可以采用多线程。
尽管Python完全支持多线程编程, 但是解释器的C语言实现部分在完全并行执行时并不是线程安全的。
实际上,解释器被一个全局解释器锁保护着,它确保任何时候都只有一个Python线程执行。
GIL最大的问题就是Python的多线程程序并不能利用多核CPU的优势 (比如一个使用了多个线程的计算密集型程序只会在一个单CPU上面运行)。
3. multiprocessing pool使用例子
对Pool对象调用join()
方法会等待所有子进程执行完毕,调用join()
之前必须先调用close()
,让其不再接受新的Process了
#coding=utf-8 import logging import time from multiprocessing import Pool logging.basicConfig(level=logging.INFO, filename='logger.log') class Point: def __init__(self, x = 0, y= 0): self.x = x self.y = y def __str__(self): return "(%d, %d)" % (self.x, self.y) def fun1(point): point.x = point.x + 3 point.y = point.y + 3 time.sleep(1) return point def fun2(x): time.sleep(1) logging.info(time.ctime() + ", fun2 input x:" + str(x)) return x * x if __name__ == '__main__': pool = Pool(4) #test1 mylist = [x for x in range(10)] ret = pool.map(fun2, mylist) print ret #test2 mydata = [Point(x, y) for x in range(3) for y in range(2)] res = pool.map(fun1, mydata) for i in res: print str(i) #end pool.close() pool.join() print "end"
运行结果:
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
(3, 3)
(3, 4)
(4, 3)
(4, 4)
(5, 3)
(5, 4)
end
关于multiprocessing Pool怎么在Python中使用就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。