环境: DBLE 2.19.03.0
OS版本: CentOS Linux release 7.6.1810 (Core)
IP: 192.168.20.10/24
MySQL版本: MySQL-社区版-5.7.26
添加2个账号授权:
create user 'rw'@'%' identified by 'rw123456';
create user 'rd'@'%' identified by 'rd123456';
GRANT SELECT, INSERT, UPDATE, DELETE, CREATE,REFERENCES,CREATE TEMPORARY TABLES,INDEX ON *.* TO rw@'%' ;
GRANT SELECT ON *.* TO 'rd'@'%' ;
连接方式:
读写:
mysql -urw -prw123456 --port 8066 -h 192.168.20.10 testdb
只读:
mysql -urd -prd123456 --port 8066 -h 192.168.20.10 testdb
ddl专用:
mysql -uop -p123456 --port 8066 -h 192.168.20.10 testdb
管理账号:
mysql -uman1 -p654321 --port 9066 -h 192.168.20.10
解压DBLE:
tar xf dble-2.19.03.tar.gz /usr/local/
cd /usr/local
ln -s dble-2.19.03 dble
cd conf/
vim schema.xml 修改后的如下:
<?xml version="1.0"?> <!DOCTYPE dble:schema SYSTEM "schema.dtd"> <dble:schema xmlns:dble="http://dble.cloud/" version="2.19.03.0"> <schema name="testdb"> <!-- 全局表 --> <table name="company" primaryKey="id" type="global" dataNode="dn1,dn2,dn3"/> <!-- range分区2 --> <table name="travelrecord" primaryKey="id" dataNode="dn1,dn2,dn3" rule="sharding-by-range_t"/> <!-- hash mod 3 分区 --> <table name="hotnews" primaryKey="id" dataNode="dn1,dn2,dn3" rule="id-sharding-by-mod3"/> <!-- hashStringmod3 分区 --> <table name="user_auth" primaryKey="open_id" dataNode="dn1,dn2,dn3" rule="user-auth-sharding-by-open_id" /> <!-- ER 分区 --> <table name="order1" dataNode="dn1,dn2,dn3" rule="id-sharding-by-mod3"> <childTable name="order_detail" primaryKey="id" joinKey="order_id" parentKey="id" /> </table> </schema> <dataNode name="dn1" dataHost="192.168.20.10" database="db1"/> <dataNode name="dn2" dataHost="192.168.20.10" database="db2"/> <dataNode name="dn3" dataHost="192.168.20.10" database="db3"/> <dataHost name="192.168.20.10" maxCon="500" minCon="10" balance="0" switchType="-1" slaveThreshold="100"> <heartbeat>select user()</heartbeat> <writeHost host="hostM" url="192.168.20.10:3306" user="rw" password="rw123456"> <readHost host="hostS" url="192.168.20.10:3306" user="rd" password="rd123456"/> </writeHost> </dataHost> </dble:schema>
vim rule.xml 修改后的内容如下:
<tableRule name="sharding-by-range_t"> <rule> <columns>id</columns> <algorithm>rangeLong2</algorithm> </rule> </tableRule> <tableRule name="id-sharding-by-mod3"> <rule> <columns>id</columns> <algorithm>hashmod3</algorithm> </rule> </tableRule> <tableRule name="user-auth-sharding-by-open_id"> <rule> <columns>open_id</columns> <algorithm>hashStringmod3</algorithm> </rule> </tableRule> <function name="rangeLong2" class="NumberRange"> <property name="mapFile">autopartition-long_t.txt</property> <property name="defaultNode">0</property><!-- 不符合条件的插入到第一个分区去 --> </function> <function name="hashmod3" class="Hash"> <property name="partitionCount">3</property> <property name="partitionLength">1</property> </function> <function name="hashStringmod3" class="StringHash"> <property name="partitionCount">3</property> <property name="partitionLength">1</property> <property name="hashSlice">0:20</property> <!-- 表示取前20位进行hash取模后再决定数据落在那个分片上 --> </function>
[root@centos7 /usr/local/dble/conf ]# vim autopartition-long_t.txt # 增加一个路由规则文件
# range start-end ,data node index # K=1000,M=10000. # 范围:前开后闭 (开区间,闭区间] 0-1M=0 1M-2M=1 2M-3M=2
vim server.xml 内容如下:
修改user部分为如下: <user name="man1"> <property name="password">654321</property> <property name="manager">true</property> <!-- manager user can't set schema--> </user> <user name="op"> <property name="password">123456</property> <property name="schemas">testdb</property> </user> <!-- table's DML privileges INSERT/UPDATE/SELECT/DELETE --> <!-- <privileges check="true"> <schema name="testdb" dml="0110" > <table name="employee" dml="1111"></table> </schema> </privileges> --> <user name="rw"> <property name="password">rw123456</property> <property name="schemas">testdb</property> </user> <user name="rd"> <property name="password">rd123456</property> <property name="schemas">testdb</property> <property name="readOnly">true</property> </user>
然后, reload 下 dble , 进行测试
ddl专用:
mysql -uop -p123456 --port 8066 -h 192.168.20.10 testdb
去创建符合上面的要求的几个表,并写入数据测试:
## 测试range分区 (testdb) > create table travelrecord ( id bigint not null primary key, user_id varchar(100), traveldate DATE, fee decimal(10,2), days int ) ENGINE=InnoDB DEFAULT CHARSET=utf8; (testdb) > insert into travelrecord (id,user_id,traveldate,fee,days) values(10,'wang','2014-01-05',510,3); (testdb) > insert into travelrecord (id,user_id,traveldate,fee,days) values(13000,'lee','2011-01-05',26.5,3); (testdb) > insert into travelrecord (id,user_id,traveldate,fee,days) values(29800,'zhang','2018-01-05',23.3,3); (testdb) > select * from travelrecord ; +-------+---------+------------+--------+------+ | id | user_id | traveldate | fee | days | +-------+---------+------------+--------+------+ | 10 | wang | 2014-01-05 | 510.00 | 3 | | 13000 | lee | 2011-01-05 | 26.50 | 3 | | 29800 | zhang | 2018-01-05 | 23.30 | 3 | +-------+---------+------------+--------+------+
## 测试全局表 (testdb) > create table company(id int not null primary key,name varchar(100)); (testdb) > insert into company(id,name) values(1,'hp'); (testdb) > insert into company(id,name) values(2,'ibm'); (testdb) > insert into company(id,name) values(3,'oracle'); (testdb) > select * from company ; +----+--------+ | id | name | +----+--------+ | 1 | hp | | 2 | ibm | | 3 | oracle | +----+--------+ 3 rows in set (0.01 sec) 多执行几次,你会看到三个分片上都插入了3条数据,因为company定义为全局表。 (testdb) > explain insert into company(id,name) values(1,'hp'); +-----------+----------+---------------------------------------------+ | DATA_NODE | TYPE | SQL/REF | +-----------+----------+---------------------------------------------+ | dn1 | BASE SQL | insert into company(id,name) values(1,'hp') | | dn2 | BASE SQL | insert into company(id,name) values(1,'hp') | | dn3 | BASE SQL | insert into company(id,name) values(1,'hp') | +-----------+----------+---------------------------------------------+ 3 rows in set (0.00 sec) 使用 explain select * from company ; 命令也可以看到随机分发到3个节点的。
## 测试hashmod分区 create table hotnews (id bigint unsigned not null primary key ,title varchar(400) ,created_time datetime) ENGINE=InnoDB DEFAULT CHARSET=utf8; 然后, 我们写个脚本,批量插入些数据,看看情况: for i in {1..1000}; do mysql -uop -p123456 --port 8066 -h 192.168.20.10 testdb -e "insert into hotnews(id,title,created_time) values($i,'one',now());" done 然后,到后端的3个分片上看下数据量,大致如下,还是比较均匀的: (db1) > select count(*) from db1.hotnews; +----------+ | count(*) | +----------+ | 333 | +----------+ 1 row in set (0.00 sec) (db1) > select count(*) from db2.hotnews; +----------+ | count(*) | +----------+ | 334 | +----------+ 1 row in set (0.00 sec) (db1) > select count(*) from db3.hotnews; +----------+ | count(*) | +----------+ | 333 | +----------+ 1 row in set (0.00 sec)
## hashStringmod分区 CREATE TABLE `user_auth` ( `id` bigint unsigned NOT NULL AUTO_INCREMENT COMMENT '主键id', `open_id` varchar(100) NOT NULL DEFAULT '' COMMENT '第三方授权id', `union_id` varchar(100) NOT NULL DEFAULT '' COMMENT '授权的关联id', PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='用户AUTH信息表' ; #### 注意:实际生产环境的主键id需要由程序去保证唯一性(例如使用雪花算法) (testdb) > insert into user_auth (id,open_id,union_id) values(1,'331116828422393856','oy0IAj9mdPUr7bLMl879Jp37eV3Y'); (testdb) > insert into user_auth (id,open_id,union_id) values(2,'341170994247204864','oy0IA3Yj9mdPUr7bLMl879Jp37eV'); (testdb) > insert into user_auth (id,open_id,union_id) values(3,'330414325695332352','oy0IAj9mdPU3Yr7bLMl879Jp37eV'); (testdb) > insert into user_auth (id,open_id,union_id) values(4,'328588424011591680','oy0IAj9mdPUr7bLMl8Jp37e79V'); (testdb) > insert into user_auth (id,open_id,union_id) values(5,'330414325695332352','oy0IA3Yj9mdPUr7p37ebLMl879JV3Y'); (testdb) > insert into user_auth (id,open_id,union_id) values(6,'341172222247211111','oy0IAj9bLMl879Jp37eV3YmdPUr7'); (testdb) > insert into user_auth (id,open_id,union_id) values(7,'341173334247755464','Jp37eoy0IAj9mdPUr73YbLMl879V'); (testdb) > select id,open_id,union_id from user_auth order by id asc ; +----+--------------------+--------------------------------+ | id | open_id | union_id | +----+--------------------+--------------------------------+ | 1 | 331116828422393856 | oy0IAj9mdPUr7bLMl879Jp37eV3Y | | 2 | 341170994247204864 | oy0IA3Yj9mdPUr7bLMl879Jp37eV | | 3 | 330414325695332352 | oy0IAj9mdPU3Yr7bLMl879Jp37eV | | 4 | 328588424011591680 | oy0IAj9mdPUr7bLMl8Jp37e79V | | 5 | 330414325695332352 | oy0IA3Yj9mdPUr7p37ebLMl879JV3Y | | 6 | 341172222247211111 | oy0IAj9bLMl879Jp37eV3YmdPUr7 | | 7 | 341173334247755464 | Jp37eoy0IAj9mdPUr73YbLMl879V | +----+--------------------+--------------------------------+ 7 rows in set (0.00 sec) (testdb) > explain select id,open_id,union_id from user_auth where open_id = '341173334247755464' ; +-----------+----------+--------------------------------------------------------------------------------+ | DATA_NODE | TYPE | SQL/REF | +-----------+----------+--------------------------------------------------------------------------------+ | dn2 | BASE SQL | select id,open_id,union_id from user_auth where open_id = '341173334247755464' | +-----------+----------+--------------------------------------------------------------------------------+ 1 row in set (0.00 sec) (testdb) > explain select id,open_id,union_id from user_auth where open_id = '331116828422393856' ; +-----------+----------+--------------------------------------------------------------------------------+ | DATA_NODE | TYPE | SQL/REF | +-----------+----------+--------------------------------------------------------------------------------+ | dn1 | BASE SQL | select id,open_id,union_id from user_auth where open_id = '331116828422393856' | +-----------+----------+--------------------------------------------------------------------------------+ 1 row in set (0.00 sec) (testdb) > explain select id,open_id,union_id from user_auth where open_id = '328588424011591680' ; +-----------+----------+--------------------------------------------------------------------------------+ | DATA_NODE | TYPE | SQL/REF | +-----------+----------+--------------------------------------------------------------------------------+ | dn3 | BASE SQL | select id,open_id,union_id from user_auth where open_id = '328588424011591680' | +-----------+----------+--------------------------------------------------------------------------------+ 1 row in set (0.00 sec)
############################################################################
上面就是几种常用的分区了, 另外还有种 date类型按时间分区的可能在日志表的场景下也常用些。
date类型分区的实验:
先去后端的db上创建物理的库:
create database userdb1 ; create database userdb2 ; create database userdb3 ; create database userdb4 ; create database userdb5 ; create database userdb6 ; create database userdb7 ; create database userdb8 ; create database userdb9 ; create database userdb10 ; create database userdb11 ; create database userdb12 ; create database userdb13 ;
修改后的 schema.xml 类似如下:
<?xml version="1.0"?> <!DOCTYPE dble:schema SYSTEM "schema.dtd"> <dble:schema xmlns:dble="http://dble.cloud/" version="2.19.03.0"> <schema name="testdb"> <!-- 按月分片 --> <table name="user" dataNode="user_dn$1-13" rule="sharding-by-month-user"/> </schema> <dataNode name="user_dn1" dataHost="192.168.20.10" database="userdb1"/> <dataNode name="user_dn2" dataHost="192.168.20.10" database="userdb2"/> <dataNode name="user_dn3" dataHost="192.168.20.10" database="userdb3"/> <dataNode name="user_dn4" dataHost="192.168.20.10" database="userdb4"/> <dataNode name="user_dn5" dataHost="192.168.20.10" database="userdb5"/> <dataNode name="user_dn6" dataHost="192.168.20.10" database="userdb6"/> <dataNode name="user_dn7" dataHost="192.168.20.10" database="userdb7"/> <dataNode name="user_dn8" dataHost="192.168.20.10" database="userdb8"/> <dataNode name="user_dn9" dataHost="192.168.20.10" database="userdb9"/> <dataNode name="user_dn10" dataHost="192.168.20.10" database="userdb10"/> <dataNode name="user_dn11" dataHost="192.168.20.10" database="userdb11"/> <dataNode name="user_dn12" dataHost="192.168.20.10" database="userdb12"/> <dataNode name="user_dn13" dataHost="192.168.20.10" database="userdb13"/> <dataHost name="192.168.20.10" maxCon="500" minCon="10" balance="0" switchType="-1" slaveThreshold="100"> <heartbeat>select user()</heartbeat> <writeHost host="hostM" url="192.168.20.10:3306" user="rw" password="rw123456"> <readHost host="hostS" url="192.168.20.10:3306" user="rd" password="rd123456"/> </writeHost> </dataHost> </dble:schema>
然后,到 rule.xml中添加规则:
<tableRule name="sharding-by-month-user"> <rule> <columns>addData</columns> <algorithm>partbymonth-user</algorithm> </rule> </tableRule> <!-- 加的基于月份的分片规则, 注意如果数量超了 会插入报错 --> <function name="partbymonth-user" class="Date"> <property name="dateFormat">yyyy-MM-dd</property> <property name="sBeginDate">2018-01-01</property> <!-- <property name="sEndDate">2019-02-31</property> --> <property name="sPartionDay">30</property> <!-- 默认是每10天一个分片。我这里改成每30天一个分片,另外注意并不按照固定的月来写入 --> <property name="defaultNode">0</property><!-- 默认小于 2018-01-01 的数据插入到dn1去 --> </function>
(testdb) > create table if not exists user (addData date, dbname varchar(32),username varchar(32),province varchar(16),age int(3)); (testdb) > insert into user (addData,dbname,username,age) values ('2015-01-01',database(),'user1',12); (testdb) > insert into user (addData,dbname,username,age) values ('2016-02-01',database(),'user1',12); (testdb) > explain insert into user (addData,dbname,username,age) values ('2017-03-01',database(),'user1',12); +-----------+----------+--------------------------------------------------------------------------------------------------+ | DATA_NODE | TYPE | SQL/REF | +-----------+----------+--------------------------------------------------------------------------------------------------+ | user_dn1 | BASE SQL | INSERT INTO user (addData, dbname, username, age) VALUES ('2017-03-01', DATABASE(), 'user1', 12) | +-----------+----------+--------------------------------------------------------------------------------------------------+ (testdb) > insert into user (addData,dbname,username,age) values ('2017-03-01',database(),'user1',12); (testdb) > insert into user (addData,dbname,username,age) values ('2018-04-01',database(),'user1',12); (testdb) > insert into user (addData,dbname,username,age) values ('2018-04-11',database(),'user1',12); (testdb) > insert into user (addData,dbname,username,age) values ('2018-04-21',database(),'user1',12); (testdb) > insert into user (addData,dbname,username,age) values ('2018-04-25',database(),'user1',12); (testdb) > insert into user (addData,dbname,username,age) values ('2018-04-30',database(),'user1',12); (testdb) > insert into user (addData,dbname,username,age) values ('2018-05-01',database(),'user1',12); (testdb) > insert into user (addData,dbname,username,age) values ('2018-05-03',database(),'user1',12); (testdb) > insert into user (addData,dbname,username,age) values ('2018-05-05',database(),'user1',12); (testdb) > insert into user (addData,dbname,username,age) values ('2018-06-21',database(),'user1',12); (testdb) > insert into user (addData,dbname,username,age) values ('2018-07-30',database(),'user1',12); (testdb) > insert into user (addData,dbname,username,age) values ('2019-01-01',database(),'user1',12); (testdb) > insert into user (addData,dbname,username,age) values ('2019-06-01',database(),'user1',12); ERROR 1064 (HY000): can't find any valid data node :user -> ADDDATA -> 2019-06-01 因此,我们需要提前人工把分片加好 并做好可用分区的监控,不然会造成无法写入数据的事故出现。 (testdb) > select * from user order by addData asc ; +------------+----------+----------+----------+------+ | addData | dbname | username | province | age | +------------+----------+----------+----------+------+ | 2015-01-01 | userdb1 | user1 | NULL | 12 | | 2016-02-01 | userdb1 | user1 | NULL | 12 | | 2017-03-01 | userdb1 | user1 | NULL | 12 | | 2018-04-01 | userdb4 | user1 | NULL | 12 | | 2018-04-11 | userdb4 | user1 | NULL | 12 | | 2018-04-21 | userdb4 | user1 | NULL | 12 | | 2018-04-25 | userdb4 | user1 | NULL | 12 | | 2018-04-30 | userdb4 | user1 | NULL | 12 | | 2018-05-01 | userdb5 | user1 | NULL | 12 | | 2018-05-03 | userdb5 | user1 | NULL | 12 | | 2018-05-05 | userdb5 | user1 | NULL | 12 | | 2018-06-21 | userdb6 | user1 | NULL | 12 | | 2018-07-30 | userdb8 | user1 | NULL | 12 | | 2019-01-01 | userdb13 | user1 | NULL | 12 | +------------+----------+----------+----------+------+ 14 rows in set (0.02 sec) 查询测试: (testdb) > explain select * from user where addData between '2018-04-01' and '2018-04-30' ; +-----------+----------+------------------------------------------------------------------------+ | DATA_NODE | TYPE | SQL/REF | +-----------+----------+------------------------------------------------------------------------+ | user_dn4 | BASE SQL | select * from user where addData between '2018-04-01' and '2018-04-30' | +-----------+----------+------------------------------------------------------------------------+ 1 row in set (0.00 sec) (testdb) > select * from user where addData between '2018-04-01' and '2018-04-30' ; +------------+---------+----------+----------+------+ | addData | dbname | username | province | age | +------------+---------+----------+----------+------+ | 2018-04-01 | userdb4 | user1 | NULL | 12 | | 2018-04-11 | userdb4 | user1 | NULL | 12 | | 2018-04-21 | userdb4 | user1 | NULL | 12 | | 2018-04-25 | userdb4 | user1 | NULL | 12 | | 2018-04-30 | userdb4 | user1 | NULL | 12 | +------------+---------+----------+----------+------+ 5 rows in set (0.01 sec) (testdb) > explain select * from user where addData between '2018-04-01' and '2018-05-30' order by addData asc ; +-----------------+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | DATA_NODE | TYPE | SQL/REF | +-----------------+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | user_dn4_0 | BASE SQL | select `user`.`addData`,`user`.`dbname`,`user`.`username`,`user`.`province`,`user`.`age` from `user` where addData BETWEEN '2018-04-01' AND '2018-05-30' ORDER BY `user`.`addData` ASC | | user_dn5_0 | BASE SQL | select `user`.`addData`,`user`.`dbname`,`user`.`username`,`user`.`province`,`user`.`age` from `user` where addData BETWEEN '2018-04-01' AND '2018-05-30' ORDER BY `user`.`addData` ASC | | merge_1 | MERGE | user_dn4_0; user_dn5_0 | | shuffle_field_1 | SHUFFLE_FIELD | merge_1 | +-----------------+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 4 rows in set (0.00 sec) (testdb) > select * from user where addData between '2018-04-01' and '2018-05-30' order by addData asc ; +------------+---------+----------+----------+------+ | addData | dbname | username | province | age | +------------+---------+----------+----------+------+ | 2018-04-01 | userdb4 | user1 | NULL | 12 | | 2018-04-11 | userdb4 | user1 | NULL | 12 | | 2018-04-21 | userdb4 | user1 | NULL | 12 | | 2018-04-25 | userdb4 | user1 | NULL | 12 | | 2018-04-30 | userdb4 | user1 | NULL | 12 | | 2018-05-01 | userdb5 | user1 | NULL | 12 | | 2018-05-03 | userdb5 | user1 | NULL | 12 | | 2018-05-05 | userdb5 | user1 | NULL | 12 | +------------+---------+----------+----------+------+ 8 rows in set (0.01 sec)
date类型的可用分区的监控(脚本的原理同样适用于其他类型的分区):
简单的做法就是定期执行一个explain的insert插入测试, 如果有ERROR关键字就告警出来
一个简单的脚本如下: # 提前60天预警 DAYS=$(date -d 60days +%F) echo $DAYS if mysql -urw -prw123456 --port 8066 -h 192.168.20.10 testdb 2>/dev/null -e "explain insert into user (addData,dbname,username,age) values (\"$DAYS\",database(),'user1',12);" ; then echo "当前可用分片数量处于安全状态" else echo "需要加新的分片了" fi
date类型加新的分片的方法:
1、修改schema.xml 加上新的分片的配置信息,修改后大致这样: <?xml version="1.0"?> <!DOCTYPE dble:schema SYSTEM "schema.dtd"> <dble:schema xmlns:dble="http://dble.cloud/" version="2.19.03.0"> <schema name="testdb"> <!-- 按月分片 --> <table name="user" dataNode="user_dn$1-23" rule="sharding-by-month-user"/> </schema> <dataNode name="user_dn1" dataHost="192.168.20.10" database="userdb1"/> <dataNode name="user_dn2" dataHost="192.168.20.10" database="userdb2"/> <dataNode name="user_dn3" dataHost="192.168.20.10" database="userdb3"/> <dataNode name="user_dn4" dataHost="192.168.20.10" database="userdb4"/> <dataNode name="user_dn5" dataHost="192.168.20.10" database="userdb5"/> <dataNode name="user_dn6" dataHost="192.168.20.10" database="userdb6"/> <dataNode name="user_dn7" dataHost="192.168.20.10" database="userdb7"/> <dataNode name="user_dn8" dataHost="192.168.20.10" database="userdb8"/> <dataNode name="user_dn9" dataHost="192.168.20.10" database="userdb9"/> <dataNode name="user_dn10" dataHost="192.168.20.10" database="userdb10"/> <dataNode name="user_dn11" dataHost="192.168.20.10" database="userdb11"/> <dataNode name="user_dn12" dataHost="192.168.20.10" database="userdb12"/> <dataNode name="user_dn13" dataHost="192.168.20.10" database="userdb13"/> <dataNode name="user_dn14" dataHost="192.168.20.10" database="userdb14"/> <dataNode name="user_dn15" dataHost="192.168.20.10" database="userdb15"/> <dataNode name="user_dn16" dataHost="192.168.20.10" database="userdb16"/> <dataNode name="user_dn17" dataHost="192.168.20.10" database="userdb17"/> <dataNode name="user_dn18" dataHost="192.168.20.10" database="userdb18"/> <dataNode name="user_dn19" dataHost="192.168.20.10" database="userdb19"/> <dataNode name="user_dn20" dataHost="192.168.20.10" database="userdb20"/> <dataNode name="user_dn21" dataHost="192.168.20.10" database="userdb21"/> <dataNode name="user_dn22" dataHost="192.168.20.10" database="userdb22"/> <dataNode name="user_dn23" dataHost="192.168.20.10" database="userdb23"/> <dataHost name="192.168.20.10" maxCon="500" minCon="10" balance="0" switchType="-1" slaveThreshold="100"> <heartbeat>select user()</heartbeat> <writeHost host="hostM" url="192.168.20.10:3306" user="rw" password="rw123456"> <readHost host="hostS" url="192.168.20.10:3306" user="rd" password="rd123456"/> </writeHost> </dataHost> </dble:schema> 2、重载配置文件 reload @@config_all ; 3、去后端创建对应的物理库 create database userdb14; .....这里省略其它的建库语句....... create database userdb23; 4、通过dble再次下发下建表命令 create table if not exists user (addData date, dbname varchar(32),username varchar(32),province varchar(16),age int(3)); 5、插入数据测试 (testdb) > explain insert into user (addData,dbname,username,age) values ('2019-11-01',database(),'user1',12); +-----------+----------+--------------------------------------------------------------------------------------------------+ | DATA_NODE | TYPE | SQL/REF | +-----------+----------+--------------------------------------------------------------------------------------------------+ | user_dn23 | BASE SQL | INSERT INTO user (addData, dbname, username, age) VALUES ('2019-11-01', DATABASE(), 'user1', 12) | +-----------+----------+--------------------------------------------------------------------------------------------------+ 1 row in set (0.00 sec) (testdb) > explain insert into user (addData,dbname,username,age) values ('2019-12-01',database(),'user1',12); ERROR 1064 (HY000): can't find any valid data node :user -> ADDDATA -> 2019-12-01
######################################################################################################
ER 表 (互联网场景下用多表JOIN的不多,因此ER分片规则不太常用到,但是需要大致的了解):
下面的内容大篇幅参考: https://blog.csdn.net/zhanglei_16/article/details/50779929
1:ER分片关系简介
有一类业务,例如订单(ORDER)跟订单明细表(ORDER_DETAIL),明细表会依赖订单单,就是该会存在表的主从关系,
这类似业务的切分可以抽象出合适的切分规则,比如根据用户ID切分,其它相关的表都依赖于用户ID,再或者根据订单ID进行切分,
总之部分业务总会可以抽象出父子关系的表。这类表适用于ER分片表,子表的记录与所关联的父表记录存放在同一个数据分片上,
避免数据Join跨库操作,以order与order_detail例子为例,schema.xml中定义合适的分片配置,order,order_detail 根据order_id
迕行数据切分,保证相同order_id的数据分到同一个分片上,在进行数据插入操作时,Mycat会获取order所在的分片,
然后将order_detail也插入到order所在的分片
2:父表按照主键ID分片,字表的分片字段与主表ID关联,配置为ER分片
2.1:在schema.xml添加如下配置配置文件修改
<!-- ER 分区 -->
<table name="order1" dataNode="dn1,dn2,dn3" rule="id-sharding-by-mod3">
<childTable name="order_detail" primaryKey="id" joinKey="order_id" parentKey="id" />
</table>
在rule.xml里面设定分片规则:
<tableRule name="id-sharding-by-mod3">
<rule>
<columns>id</columns>
<algorithm>hashmod3</algorithm>
</rule>
</tableRule>
<!-- mod 3 -->
<function name="hashmod3" class="Hash">
<property name="partitionCount">3</property>
<property name="partitionLength">1</property>
</function>
然后, reload 下 dble
2.2 先建表, order 和 order_detail 表,有主外键关系
mysql> explain CREATE TABLE order1 (id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,sn VARCHAR(64),create_time DATETIME) ENGINE=InnoDB DEFAULT CHARSET=utf8;
+-----------+-----------------------------------------------------------------------------------------------------+
| DATA_NODE | SQL |
+-----------+-----------------------------------------------------------------------------------------------------+
| dn1 | CREATE TABLE order1(id int unsigned NOT NULL AUTO_INCREMENT PRIMARY KEY,sn VARCHAR(64),create_time DATETIME) |
| dn2 | CREATE TABLE order1(id int unsigned NOT NULL AUTO_INCREMENT PRIMARY KEY,sn VARCHAR(64),create_time DATETIME) |
| dn3 | CREATE TABLE order1(id int unsigned NOT NULL AUTO_INCREMENT PRIMARY KEY,sn VARCHAR(64),create_time DATETIME) |
+-----------+-----------------------------------------------------------------------------------------------------+
3 rows in set (0.02 sec)
mysql> CREATE TABLE order1(id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,sn VARCHAR(64),create_time DATETIME) ENGINE=InnoDB DEFAULT CHARSET=utf8;
Query OK, 0 rows affected (0.35 sec)
mysql> CREATE TABLE order_detail(id INT AUTO_INCREMENT PRIMARY KEY, order_id INT,ord_status CHAR(1),address VARCHAR(128),create_time DATETIME,CONSTRAINT FK_ORDid FOREIGN KEY (order_id) REFERENCES order1 (id)) ENGINE=InnoDB DEFAULT CHARSET=utf8;
Query OK, 0 rows affected (0.44 sec)
3.3 录入数据:
mysql> explain INSERT INTO order1(id,sn,create_time) VALUES(1,'BJ0001',NOW());
+-----------+----------------------------------------------------------------+
| DATA_NODE | SQL |
+-----------+----------------------------------------------------------------+
| dn2 | INSERT INTO order1(id,sn,create_time) VALUES(1,'BJ0001',NOW()) |
+-----------+----------------------------------------------------------------+
1 row in set (0.03 sec)
录入数据,一组组录入,涉及到外键关系:
第一组北京的订单
mysql> INSERT INTO order1(id,sn,create_time) VALUES(1,'BJ0001',NOW());
Query OK, 1 row affected (0.05 sec)
mysql> INSERT INTO ORDER_DETAIL(id,order_id,ord_status,address,create_time) VALUES (1,1,'1','test data of order1(id=1,BJ001) ',NOW());
第二组上海的订单:
mysql> explain INSERT INTO order1(id,sn,create_time) VALUES(3,'SHH001',NOW());
+-----------+----------------------------------------------------------------+
| DATA_NODE | SQL |
+-----------+----------------------------------------------------------------+
| dn1 | INSERT INTO order1(id,sn,create_time) VALUES(3,'SHH001',NOW()) |
+-----------+----------------------------------------------------------------+
1 row in set (0.02 sec)
mysql> INSERT INTO order1(id,sn,create_time) VALUES(3,'SHH001',NOW());
Query OK, 1 row affected (0.04 sec)
mysql> INSERT INTO ORDER_DETAIL(id,order_id,ord_status,address,create_time) VALUES (3,3,'1','test data of order1(id=3,SHH001)',NOW());
Query OK, 1 row affected (0.06 sec)
第三组广州的订单:
mysql> explain INSERT INTO order1(id,sn,create_time) VALUES(4,'GZH004',NOW());
+-----------+----------------------------------------------------------------+
| DATA_NODE | SQL |
+-----------+----------------------------------------------------------------+
| dn2 | INSERT INTO order1(id,sn,create_time) VALUES(4,'GZH004',NOW()) |
+-----------+----------------------------------------------------------------+
1 row in set (0.00 sec)
mysql> INSERT INTO order1(id,sn,create_time) VALUES(4,'GZH004',NOW());
Query OK, 1 row affected (0.06 sec)
mysql> INSERT INTO ORDER_DETAIL(id,order_id,ord_status,address,create_time) VALUES (4,4,'1','test data of order1(id=4,GZH004) ',NOW());
Query OK, 1 row affected (0.05 sec)
第四组 武汉的订单,这里故意将order_id设置成4,看看效果,是否随id为4的广州的那组分片:
mysql> explain INSERT INTO order1(id,sn,create_time) VALUES(5,'WUHAN005',NOW());
+-----------+------------------------------------------------------------------+
| DATA_NODE | SQL |
+-----------+------------------------------------------------------------------+
| dn3 | INSERT INTO order1(id,sn,create_time) VALUES(5,'WUHAN005',NOW()) |
+-----------+------------------------------------------------------------------+
1 row in set (0.01 sec)
mysql> explain INSERT INTO order1(id,sn,create_time) VALUES(6,'WUHAN006',NOW());
Query OK, 1 row affected (0.03 sec)
mysql> INSERT INTO ORDER_DETAIL(id,order_id,ord_status,address,create_time) VALUES (6,4,'1','test data of order1(id=6,WUHAN006) ',NOW());
Query OK, 1 row affected (0.05 sec)
通过DBLE,查看下数据写入的情况:
(testdb) > select * from order1;
+----+--------+---------------------+
| id | sn | create_time |
+----+--------+---------------------+
| 1 | BJ0001 | 2019-08-31 23:05:36 |
| 4 | GZH004 | 2019-08-31 23:06:57 |
| 3 | SHH001 | 2019-08-31 23:06:43 |
+----+--------+---------------------+
3 rows in set (0.01 sec)
(testdb) > select * from order_detail ;
+----+----------+------------+--------------------------------------+---------------------+
| id | order_id | ord_status | address | create_time |
+----+----------+------------+--------------------------------------+---------------------+
| 1 | 1 | 1 | test data of ORDER1(ID=1,BJ001) | 2019-08-31 23:06:17 |
| 4 | 4 | 1 | test data of ORDER1(ID=4,GZH004) | 2019-08-31 23:07:01 |
| 6 | 4 | 1 | test data of ORDER1(ID=6,WUHAN006) | 2019-08-31 23:07:23 |
| 3 | 3 | 1 | test data of ORDER1(ID=3,SHH001) | 2019-08-31 23:06:47 |
+----+----------+------------+--------------------------------------+---------------------+
4 rows in set (0.01 sec)
直连后端的db1,看下数据情况 (db2 和 db3 上面的数据查看,使用同样的方法);
((none)) > select * from db1.order1;
+----+--------+---------------------+
| id | sn | create_time |
+----+--------+---------------------+
| 3 | SHH001 | 2019-08-31 23:06:43 |
+----+--------+---------------------+
1 row in set (0.00 sec)
((none)) > select * from db1.order_detail;
+----+----------+------------+----------------------------------+---------------------+
| id | order_id | ord_status | address | create_time |
+----+----------+------------+----------------------------------+---------------------+
| 3 | 3 | 1 | test data of ORDER1(ID=3,SHH001) | 2019-08-31 23:06:47 |
+----+----------+------------+----------------------------------+---------------------+
1 row in set (0.00 sec)
2.6 走DBLE,模拟下业务的查询:
(testdb) > explain select t1.*,t2.* from order1 t1,order_detail t2 where t2.ord_status='1' and t2.id=1 and t1.id=t2.order_id;
+-----------------+---------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| DATA_NODE | TYPE | SQL/REF |
+-----------------+---------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| dn1_0 | BASE SQL | select `t2`.`id`,`t2`.`order_id`,`t2`.`ord_status`,`t2`.`address`,`t2`.`create_time`,`t1`.`id`,`t1`.`sn`,`t1`.`create_time` from `order1` `t1` join `order_detail` `t2` on `t1`.`id` = `t2`.`order_id` where (`t2`.`ord_status` = '1') AND (`t2`.`id` = 1) |
| dn2_0 | BASE SQL | select `t2`.`id`,`t2`.`order_id`,`t2`.`ord_status`,`t2`.`address`,`t2`.`create_time`,`t1`.`id`,`t1`.`sn`,`t1`.`create_time` from `order1` `t1` join `order_detail` `t2` on `t1`.`id` = `t2`.`order_id` where (`t2`.`ord_status` = '1') AND (`t2`.`id` = 1) |
| dn3_0 | BASE SQL | select `t2`.`id`,`t2`.`order_id`,`t2`.`ord_status`,`t2`.`address`,`t2`.`create_time`,`t1`.`id`,`t1`.`sn`,`t1`.`create_time` from `order1` `t1` join `order_detail` `t2` on `t1`.`id` = `t2`.`order_id` where (`t2`.`ord_status` = '1') AND (`t2`.`id` = 1) |
| merge_1 | MERGE | dn1_0; dn2_0; dn3_0 |
| shuffle_field_1 | SHUFFLE_FIELD | merge_1 |
+-----------------+---------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
5 rows in set (0.00 sec)
(testdb) > SELECT
t1.*,
t2.*
FROM
order1 t1,
order_detail t2
WHERE t2.ord_status = '1'
AND t2.id = 1
AND t1.id = t2.order_id ;
+----+--------+---------------------+----+----------+------------+-----------------------------------+---------------------+
| id | sn | create_time | id | order_id | ord_status | address | create_time |
+----+--------+---------------------+----+----------+------------+-----------------------------------+---------------------+
| 1 | BJ0001 | 2019-08-31 23:05:36 | 1 | 1 | 1 | test data of ORDER1(ID=1,BJ001) | 2019-08-31 23:06:17 |
+----+--------+---------------------+----+----------+------------+-----------------------------------+---------------------+
1 row in set (0.00 sec)
2.7 总结:当子表与父表的关联字段正好是父表的分片字段时,子表直接根据父表规则进行分片,在数据录入的时候子表直接放在父表的分片上面,在进行关联查询join的时候,走的是父表的路由。
【重要】其它的总结:
当子表与父表的关联字段不是父表的分片字段时,必须通过查找对应的父表记录来确认子表所在分片,如果找不到则会抛出错误,在join查询的时候,路由走的是所有分片节点!!!!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。