温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python实际案例演示:一行 Python代码实现并行

发布时间:2020-08-04 21:30:17 来源:ITPUB博客 阅读:128 作者:千锋Python唐小强 栏目:编程语言

Python 在程序并行化方面多少有些声名狼藉。撇开技术上的问题,例如线程的实现和 GIL,我觉得错误的教学指导才是主要问题。

常见的经典 Python 多线程、多进程教程多显得偏"重"。而且往往隔靴搔痒,没有深入探讨日常工作中最有用的内容。

传统的例子

简单搜索下"Python 多线程教程",不难发现几乎所有的教程都给出涉及类和队列的例子:

import os

import PIL

from multiprocessing import Pool
from PIL import Image

SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'

def get_image_paths(folder):
   return (os.path.join(folder, f)
           for f in os.listdir(folder)
           if 'jpeg' in f)

def create_thumbnail(filename):
   im = Image.open(filename)
   im.thumbnail(SIZE, Image.ANTIALIAS)
   base, fname = os.path.split(filename)
   save_path = os.path.join(base, SAVE_DIRECTORY, fname)
   im.save(save_path)

if __name__ == '__main__':
   folder = os.path.abspath(
       '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
   os.mkdir(os.path.join(folder, SAVE_DIRECTORY))

   images = get_image_paths(folder)

   pool = Pool()
   pool.map(creat_thumbnail, images)
   pool.close()
   pool.join()

哈,看起来有些像 Java 不是吗?

我并不是说使用生产者/消费者模型处理多线程/多进程任务是错误的(事实上,这一模型自有其用武之地)。只是,处理日常脚本任务时我们可以使用更有效率的模型。

问题在于…

首先,你需要一个样板类; 
其次,你需要一个队列来传递对象; 
而且,你还需要在通道两端都构建相应的方法来协助其工作(如果需想要进行双向通信或是保存结果还需要再引入一个队列)。

worker 越多,问题越多

按照这一思路,你现在需要一个 worker 线程的线程池。下面是一篇 IBM 经典教程中的例子——在进行网页检索时通过多线程进行加速。

#Example2.py

'''
A more realistic thread pool example
'''

import time
import threading
import Queue
import urllib2

class Consumer(threading.Thread):
   def __init__(self, queue):
       threading.Thread.__init__(self)
       self._queue = queue

   def run(self):
       while True:
           content = self._queue.get()
           if isinstance(content, str) and content == 'quit':
               break
           response = urllib2.urlopen(content)
       print 'Bye byes!'

def Producer():
   urls = [
       'http://www.python.org', 'http://www.yahoo.com'
       'http://www.scala.org', 'http://www.google.com'
       # etc..
   ]
   queue = Queue.Queue()
   worker_threads = build_worker_pool(queue, 4)
   start_time = time.time()

   # Add the urls to process
   for url in urls:
       queue.put(url)  
   # Add the poison pillv
   for worker in worker_threads:
       queue.put('quit')
   for worker in worker_threads:
       worker.join()

   print 'Done! Time taken: {}'.format(time.time() - start_time)

def build_worker_pool(queue, size):
   workers = []
   for _ in range(size):
       worker = Consumer(queue)
       worker.start()
       workers.append(worker)
   return workers

if __name__ == '__main__':
   Producer()

这段代码能正确的运行,但仔细看看我们需要做些什么:构造不同的方法、追踪一系列的线程,还有为了解决恼人的死锁问题,我们需要进行一系列的 join 操作。这还只是开始……

至此我们回顾了经典的多线程教程,多少有些空洞不是吗?样板化而且易出错,这样事倍功半的风格显然不那么适合日常使用,好在我们还有更好的方法。

何不试试 map

map 这一小巧精致的函数是简捷实现 Python 程序并行化的关键。map 源于 Lisp 这类函数式编程语言。它可以通过一个序列实现两个函数之间的映射。

urls = ['http://www.yahoo.com', 'http://www.reddit.com']

results = map(urllib2.urlopen, urls)

上面的这两行代码将 urls 这一序列中的每个元素作为参数传递到 urlopen 方法中,并将所有结果保存到 results 这一列表中。其结果大致相当于:

results = []

for url in urls:
   results.append(urllib2.urlopen(url))

map 函数一手包办了序列操作、参数传递和结果保存等一系列的操作。

为什么这很重要呢?这是因为借助正确的库,map 可以轻松实现并行化操作。

Python实际案例演示:一行 Python代码实现并行

在 Python 中有个两个库包含了 map 函数:multiprocessing 和它鲜为人知的子库 multiprocessing.dummy.

这里多扯两句:multiprocessing.dummy?mltiprocessing 库的线程版克隆?这是虾米?即便在 multiprocessing 库的官方文档里关于这一子库也只有一句相关描述。而这句描述译成人话基本就是说:"嘛,有这么个东西,你知道就成."相信我,这个库被严重低估了!

dummy 是 multiprocessing 模块的完整克隆,唯一的不同在于 multiprocessing 作用于进程,而 dummy 模块作用于线程(因此也包括了 Python 所有常见的多线程限制)。 
所以替换使用这两个库异常容易。你可以针对 IO 密集型任务和 CPU 密集型任务来选择不同的库。

动手尝试

使用下面的两行代码来引用包含并行化 map 函数的库:

from multiprocessing import Pool

from multiprocessing.dummy import Pool as ThreadPool

实例化 Pool 对象:

pool = ThreadPool()

这条简单的语句替代了 example2.py 中 buildworkerpool 函数 7 行代码的工作。它生成了一系列的 worker 线程并完成初始化工作、将它们储存在变量中以方便访问。

Pool 对象有一些参数,这里我所需要关注的只是它的第一个参数:processes. 这一参数用于设定线程池中的线程数。其默认值为当前机器 CPU 的核数。

一般来说,执行 CPU 密集型任务时,调用越多的核速度就越快。但是当处理网络密集型任务时,事情有有些难以预计了,通过实验来确定线程池的大小才是明智的。

pool = ThreadPool(4) # Sets the pool size to 4

线程数过多时,切换线程所消耗的时间甚至会超过实际工作时间。对于不同的工作,通过尝试来找到线程池大小的最优值是个不错的主意。

创建好 Pool 对象后,并行化的程序便呼之欲出了。我们来看看改写后的 example2.py

import urllib2

from multiprocessing.dummy import Pool as ThreadPool

urls = [
   'http://www.python.org',
   'http://www.python.org/about/',
   'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html',
   'http://www.python.org/doc/',
   'http://www.python.org/download/',
   'http://www.python.org/getit/',
   'http://www.python.org/community/',
   'https://wiki.python.org/moin/',
   'http://planet.python.org/',
   'https://wiki.python.org/moin/LocalUserGroups',
   'http://www.python.org/psf/',
   'http://docs.python.org/devguide/',
   'http://www.python.org/community/awards/'
   # etc..
   ]

# Make the Pool of workers
pool = ThreadPool(4)
# Open the urls in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)
#close the pool and wait for the work to finish
pool.close()
pool.join()

实际起作用的代码只有 4 行,其中只有一行是关键的。map 函数轻而易举的取代了前文中超过 40 行的例子。为了更有趣一些,我统计了不同方法、不同线程池大小的耗时情况。

# results = []

# for url in urls:
#   result = urllib2.urlopen(url)
#   results.append(result)

# # ------- VERSUS ------- #

# # ------- 4 Pool ------- #
# pool = ThreadPool(4)
# results = pool.map(urllib2.urlopen, urls)

# # ------- 8 Pool ------- #

# pool = ThreadPool(8)
# results = pool.map(urllib2.urlopen, urls)

# # ------- 13 Pool ------- #

# pool = ThreadPool(13)
# results = pool.map(urllib2.urlopen, urls)

结果:

#        Single thread:  14.4 Seconds

#               4 Pool:   3.1 Seconds
#               8 Pool:   1.4 Seconds
#              13 Pool:   1.3 Seconds

很棒的结果不是吗?这一结果也说明了为什么要通过实验来确定线程池的大小。在我的机器上当线程池大小大于 9 带来的收益就十分有限了。

另一个真实的例子

生成上千张图片的缩略图 
这是一个 CPU 密集型的任务,并且十分适合进行并行化。

基础单进程版本

import os

import PIL

from multiprocessing import Pool
from PIL import Image

SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'

def get_image_paths(folder):
   return (os.path.join(folder, f)
           for f in os.listdir(folder)
           if 'jpeg' in f)

def create_thumbnail(filename):
   im = Image.open(filename)
   im.thumbnail(SIZE, Image.ANTIALIAS)
   base, fname = os.path.split(filename)
   save_path = os.path.join(base, SAVE_DIRECTORY, fname)
   im.save(save_path)

if __name__ == '__main__':
   folder = os.path.abspath(
       '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
   os.mkdir(os.path.join(folder, SAVE_DIRECTORY))

   images = get_image_paths(folder)

   for image in images:
       create_thumbnail(Image)

上边这段代码的主要工作就是将遍历传入的文件夹中的图片文件,一一生成缩略图,并将这些缩略图保存到特定文件夹中。

这我的机器上,用这一程序处理  6000 张图片需要花费  27.9 秒

如果我们使用 map 函数来代替 for 循环:

import os

import PIL

from multiprocessing import Pool
from PIL import Image

SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'

def get_image_paths(folder):
   return (os.path.join(folder, f)
           for f in os.listdir(folder)
           if 'jpeg' in f)

def create_thumbnail(filename):
   im = Image.open(filename)
   im.thumbnail(SIZE, Image.ANTIALIAS)
   base, fname = os.path.split(filename)
   save_path = os.path.join(base, SAVE_DIRECTORY, fname)
   im.save(save_path)

if __name__ == '__main__':
   folder = os.path.abspath(
       '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
   os.mkdir(os.path.join(folder, SAVE_DIRECTORY))

   images = get_image_paths(folder)

   pool = Pool()
   pool.map(creat_thumbnail, images)
   pool.close()
   pool.join()

5.6 秒!

虽然只改动了几行代码,我们却明显提高了程序的执行速度。在生产环境中,我们可以为 CPU 密集型任务和 IO 密集型任务分别选择多进程和多线程库来进一步提高执行速度——这也是解决死锁问题的良方。此外,由于 map 函数并不支持手动线程管理,反而使得相关的 debug 工作也变得异常简单。

到这里,我们就实现了(基本)通过一行 Python 实现并行化。

这种方式对于代码的优化侵入较小,这也可以避免在重构代码时发生意外!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI