温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python中numpy怎样索引

发布时间:2020-11-02 12:37:36 阅读:134 作者:小新 栏目:编程语言
Python开发者专用服务器限时活动,0元免费领,库存有限,领完即止! 点击查看>>

这篇文章主要介绍了Python中numpy怎样索引,具有一定借鉴价值,需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获。下面让小编带着大家一起了解一下。

我们都知道,使用numpy可以存储和处理大型矩阵,必然需要学会使用矩阵的表示。矩阵中对应元素如何索引等。在此之前,我们已经学过线性代数中矩阵的表示,a[2][3]即表示第3行第4列的元素。那么,在numpy中也一样。

一维索引

import numpy as np
A = np.arange(3,15)
# array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
         
print(A[3])    # 6
A = np.arange(3,15).reshape((3,4))
"""
array([[ 3,  4,  5,  6]
       [ 7,  8,  9, 10]
       [11, 12, 13, 14]])
"""
         
print(A[2])         
# [11 12 13 14]

A[2]对应的就是矩阵A中第三行(从0开始算第一行)的所有元素。

二维索引

当我们需要表示具体某个元素时,就需要使用到二维索引。依然使用上述例子。

print(A[1][1])      # 8
print(A[1,1])       # 8

对一定范围内的元素进行切片操作:

print(A[1, 1:3])    # [8 9]
 
for row in A:        # 对行操作
    print(row)
"""    
[3 4 5 6]
[ 7  8  9 10]
[11 12 13 14]
"""
for column in A.T:        # 对列操作
    print(column)
"""  
[ 3  7 11]
[ 4  8 12]
[ 5  9 13]
[ 6 10 14]
"""

注意:上述表示方法 A.T 即对A进行转置,再将得到的矩阵逐行输出即可得到原矩阵的逐列输出。

关于迭代输出的问题

import numpy as np
A = np.arange(3,15).reshape((3,4))
         
print(A.flatten())   
# [ 3  4  5  6  7  8  9 10 11 12 13 14]
 
for item in A.flat:
    print(item)
# 3
# 4
……
# 14

这一脚本中的flatten是一个展开性质的函数,将多维的矩阵进行展开成1行的数列。而flat是一个迭代器,本身是一个object属性。

感谢你能够认真阅读完这篇文章,希望小编分享Python中numpy怎样索引内容对大家有帮助,同时也希望大家多多支持亿速云,关注亿速云行业资讯频道,遇到问题就找亿速云,详细的解决方法等着你来学习!

亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI

开发者交流群×