温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

使用.NET怎么实现一个人脸识别功能

发布时间:2021-04-08 15:54:54 来源:亿速云 阅读:333 作者:Leah 栏目:开发技术

本篇文章为大家展示了使用.NET怎么实现一个人脸识别功能,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

使用方法

首先安装NuGetMicrosoft.Azure.CognitiveServices.Vision.Face,目前最新版是2.5.0-preview.1,然后创建一个FaceClient

string key = "fa3a7bfd807ccd6b17cf559ad584cbaa"; // 替换为你的key
using var fc = new FaceClient(new ApiKeyServiceClientCredentials(key))
{
  Endpoint = "https://southeastasia.api.cognitive.microsoft.com",
};

然后识别一张照片:

using var file = File.OpenRead(@"C:\Photos\DSC_996ICU.JPG");
IList<DetectedFace> faces = await fc.Face.DetectWithStreamAsync(file);

其中返回的faces是一个IList结构,很显然一次可以识别出多个人脸,其中一个示例返回结果如下(已转换为JSON):

[
  {
   "FaceId": "9997b64e-6e62-4424-88b5-f4780d3767c6",
   "RecognitionModel": null,
   "FaceRectangle": {
    "Width": 174,
    "Height": 174,
    "Left": 62,
    "Top": 559
   },
   "FaceLandmarks": null,
   "FaceAttributes": null
  },
  {
   "FaceId": "8793b251-8cc8-45c5-ab68-e7c9064c4cfd",
   "RecognitionModel": null,
   "FaceRectangle": {
    "Width": 152,
    "Height": 152,
    "Left": 775,
    "Top": 580
   },
   "FaceLandmarks": null,
   "FaceAttributes": null
  }
 ]

可见,该照片返回了两个DetectedFace对象,它用FaceId保存了其Id,用于后续的识别,用FaceRectangle保存了其人脸的位置信息,可供对其做进一步操作。RecognitionModelFaceLandmarksFaceAttributes是一些额外属性,包括识别性别年龄表情等信息,默认不识别,如下图API所示,可以通过各种参数配置,非常好玩,有兴趣的可以试试:

使用.NET怎么实现一个人脸识别功能

最后,通过.GroupAsync来将之前识别出的多个faceId进行分类:

var faceIds = faces.Select(x => x.FaceId.Value).ToList();
GroupResult reslut = await fc.Face.GroupAsync(faceIds);

返回了一个GroupResult,其对象定义如下:

public class GroupResult
{
  public IList<IList<Guid>> Groups
  {
    get;
    set;
  }

  public IList<Guid> MessyGroup
  {
    get;
    set;
  }

  // ...
}

包含了一个Groups对象和一个MessyGroup对象,其中Groups是一个数据的数据,用于存放人脸的分组,MessyGroup用于保存未能找到分组的FaceId

有了这个,就可以通过一小段简短的代码,将不同的人脸组,分别复制对应的文件夹中:

void CopyGroup(string outputPath, GroupResult result, Dictionary<Guid, (string file, DetectedFace face)> faces)
{
  foreach (var item in result.Groups
    .SelectMany((group, index) => group.Select(v => (faceId: v, index)))
    .Select(x => (info: faces[x.faceId], i: x.index + 1)).Dump())
  {
    string dir = Path.Combine(outputPath, item.i.ToString());
    Directory.CreateDirectory(dir);
    File.Copy(item.info.file, Path.Combine(dir, Path.GetFileName(item.info.file)), overwrite: true);
  }
  
  string messyFolder = Path.Combine(outputPath, "messy");
  Directory.CreateDirectory(messyFolder);
  foreach (var file in result.MessyGroup.Select(x => faces[x].file).Distinct())
  {
    File.Copy(file, Path.Combine(messyFolder, Path.GetFileName(file)), overwrite: true);
  }
}

然后就能得到运行结果,如图,我传入了102张照片,输出了15个分组和一个“未找到队友”的分组:

使用.NET怎么实现一个人脸识别功能

还能有什么问题?

就两个API调用而已,代码一把梭,感觉太简单了?其实不然,还会有很多问题。

图片太大,需要压缩

毕竟要把图片上传到云服务中,如果上传网速不佳,流量会挺大,而且现在的手机、单反、微单都能轻松达到好几千万像素,jpg大小轻松上10MB,如果不压缩就上传,一来流量和速度遭不住。

二来……其实Azure也不支持,文档(https://docs.microsoft.com/en-us/rest/api/cognitiveservices/face/face/detectwithstream)显示,最大仅支持6MB的图片,且图片大小应不大于1920x1080的分辨率:

  • JPEG, PNG, GIF (the first frame), and BMP format are supported. The allowed image file size is from 1KB to 6MB.

  • The minimum detectable face size is 36x36 pixels in an image no larger than 1920x1080 pixels. Images with dimensions higher than 1920x1080 pixels will need a proportionally larger minimum face size.

因此,如果图片太大,必须进行一定的压缩(当然如果图片太小,显然也没必要进行压缩了),使用.NETBitmap,并结合C# 8.0switch expression,这个判断逻辑以及压缩代码可以一气呵成:

byte[] CompressImage(string image, int edgeLimit = 1920)
{
  using var bmp = Bitmap.FromFile(image);
  
  using var resized = (1.0 * Math.Max(bmp.Width, bmp.Height) / edgeLimit) switch
  {
    var x when x > 1 => new Bitmap(bmp, new Size((int)(bmp.Size.Width / x), (int)(bmp.Size.Height / x))), 
    _ => bmp, 
  };
  
  using var ms = new MemoryStream();
  resized.Save(ms, ImageFormat.Jpeg);
  return ms.ToArray();
}

竖立的照片

相机一般都是3:2的传感器,拍出来的照片一般都是横向的。但偶尔寻求一些构图的时候,我们也会选择纵向构图。虽然现在许多API都支持正负30度的侧脸,但竖着的脸API基本都是不支持的,如下图(实在找不到可以授权使用照片的模特了?):

使用.NET怎么实现一个人脸识别功能

还好照片在拍摄后,都会保留exif信息,只需读取exif信息并对照片做相应的旋转即可:

void HandleOrientation(Image image, PropertyItem[] propertyItems)
{
  const int exifOrientationId = 0x112;
  PropertyItem orientationProp = propertyItems.FirstOrDefault(i => i.Id == exifOrientationId);
  
  if (orientationProp == null) return;
  
  int val = BitConverter.ToUInt16(orientationProp.Value, 0);
  RotateFlipType rotateFlipType = val switch
  {
    2 => RotateFlipType.RotateNoneFlipX, 
    3 => RotateFlipType.Rotate180FlipNone, 
    4 => RotateFlipType.Rotate180FlipX, 
    5 => RotateFlipType.Rotate90FlipX, 
    6 => RotateFlipType.Rotate90FlipNone, 
    7 => RotateFlipType.Rotate270FlipX, 
    8 => RotateFlipType.Rotate270FlipNone, 
    _ => RotateFlipType.RotateNoneFlipNone, 
  };
  
  if (rotateFlipType != RotateFlipType.RotateNoneFlipNone)
  {
    image.RotateFlip(rotateFlipType);
  }
}

旋转后,我的照片如下:

使用.NET怎么实现一个人脸识别功能

这样竖拍的照片也能识别出来了。

并行速度

前文说过,一个文件夹可能会有成千上万个文件,一个个上传识别,速度可能慢了点,它的代码可能长这个样子:

Dictionary<Guid, (string file, DetectedFace face)> faces = GetFiles(inFolder)
 .Select(file => 
 {
  byte[] bytes = CompressImage(file);
  var result = (file, faces: fc.Face.DetectWithStreamAsync(new MemoryStream(bytes)).GetAwaiter().GetResult());
  (result.faces.Count == 0 ? $"{file} not detect any face!!!" : $"{file} detected {result.faces.Count}.").Dump();
  return (file, faces: result.faces.ToList());
 })
 .SelectMany(x => x.faces.Select(face => (x.file, face)))
 .ToDictionary(x => x.face.FaceId.Value, x => (file: x.file, face: x.face));

要想把速度变化,可以启用并行上传,有了C#/.NETLINQ支持,只需加一行.AsParallel()即可完成:

Dictionary<Guid, (string file, DetectedFace face)> faces = GetFiles(inFolder)
 .AsParallel() // 加的就是这行代码
 .Select(file => 
 {
  byte[] bytes = CompressImage(file);
  var result = (file, faces: fc.Face.DetectWithStreamAsync(new MemoryStream(bytes)).GetAwaiter().GetResult());
  (result.faces.Count == 0 ? $"{file} not detect any face!!!" : $"{file} detected {result.faces.Count}.").Dump();
  return (file, faces: result.faces.ToList());
 })
 .SelectMany(x => x.faces.Select(face => (x.file, face)))
 .ToDictionary(x => x.face.FaceId.Value, x => (file: x.file, face: x.face));

断点续传

也如上文所说,有成千上万张照片,如果一旦网络传输异常,或者打翻了桌子上的咖啡(谁知道呢?)……或者完全一切正常,只是想再做一些其它的分析,所有东西又要重新开始。我们可以加入下载中常说的“断点续传”机制。

其实就是一个缓存,记录每个文件读取的结果,然后下次运行时先从缓存中读取即可,缓存到一个json文件中:

Dictionary<Guid, (string file, DetectedFace face)> faces = GetFiles(inFolder)
 .AsParallel() // 加的就是这行代码
 .Select(file => 
 {
  byte[] bytes = CompressImage(file);
  var result = (file, faces: fc.Face.DetectWithStreamAsync(new MemoryStream(bytes)).GetAwaiter().GetResult());
  (result.faces.Count == 0 ? $"{file} not detect any face!!!" : $"{file} detected {result.faces.Count}.").Dump();
  return (file, faces: result.faces.ToList());
 })
 .SelectMany(x => x.faces.Select(face => (x.file, face)))
 .ToDictionary(x => x.face.FaceId.Value, x => (file: x.file, face: x.face));

注意代码下方有一个lock关键字,是为了保证多线程下载时的线程安全。

使用时,只需只需在Select中添加一行代码即可:

var cache = new Cache<List<DetectedFace>>(); // 重点
Dictionary<Guid, (string file, DetectedFace face)> faces = GetFiles(inFolder)
 .AsParallel()
 .Select(file => (file: file, faces: cache.GetOrCreate(file, () => // 重点
 {
  byte[] bytes = CompressImage(file);
  var result = (file, faces: fc.Face.DetectWithStreamAsync(new MemoryStream(bytes)).GetAwaiter().GetResult());
  (result.faces.Count == 0 ? $"{file} not detect any face!!!" : $"{file} detected {result.faces.Count}.").Dump();
  return result.faces.ToList();
 })))
 .SelectMany(x => x.faces.Select(face => (x.file, face)))
 .ToDictionary(x => x.face.FaceId.Value, x => (file: x.file, face: x.face));

将人脸框起来

照片太多,如果活动很大,或者合影中有好几十个人,分出来的组,将长这个样子:

使用.NET怎么实现一个人脸识别功能

完全不知道自己的脸在哪,因此需要将检测到的脸框起来。

注意框起来的过程,也很有技巧,回忆一下,上传时的照片本来就是压缩和旋转过的,因此返回的DetectedFace对象值,它也是压缩和旋转过的,如果不进行压缩和旋转,找到的脸的位置会完全不正确,因此需要将之前的计算过程重新演算一次:

using var bmp = Bitmap.FromFile(item.info.file);
HandleOrientation(bmp, bmp.PropertyItems);
using (var g = Graphics.FromImage(bmp))
{
 using var brush = new SolidBrush(Color.Red);
 using var pen = new Pen(brush, 5.0f);
 var rect = item.info.face.FaceRectangle;
 float scale = Math.Max(1.0f, (float)(1.0 * Math.Max(bmp.Width, bmp.Height) / 1920.0));
 g.ScaleTransform(scale, scale);
 g.DrawRectangle(pen, new Rectangle(rect.Left, rect.Top, rect.Width, rect.Height));
}
bmp.Save(Path.Combine(dir, Path.GetFileName(item.info.file)));

使用我上面的那张照片,检测结果如下(有点像相机对焦时人脸识别的感觉):

使用.NET怎么实现一个人脸识别功能

1000个脸的限制

.GroupAsync方法一次只能检测1000FaceId,而上次活动800多张照片中有超过2000FaceId,因此需要做一些必要的分组。

分组最简单的方法,就是使用System.Interactive包,它提供了Rx.NET那样方便快捷的API(这些APILINQ中未提供),但又不需要引入Observable<T>那样重量级的东西,因此使用起来很方便。

这里我使用的是.Buffer(int)函数,它可以将IEnumerable<T>按指定的数量(如1000)进行分组,代码如下:

foreach (var buffer in faces
 .Buffer(1000)
 .Select((list, groupId) => (list, groupId))
{
 GroupResult group = await fc.Face.GroupAsync(buffer.list.Select(x => x.Key).ToList());
 var folder = outFolder + @"\gid-" + buffer.groupId;
 CopyGroup(folder, group, faces);
}

上述内容就是使用.NET怎么实现一个人脸识别功能,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI