本篇文章为大家展示了如何在pandas中统计重复值的次数,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
具体如下:
from pandas import DataFrame
df = DataFrame({'key1':['a','a','b','b','a','a'],
'key2':['one','two','one','two','one','one'],
'data1':[1,2,3,2,1,1],
# 'data2':np.random.randn(5)
})
# 打印数据框
print(df)
# data1 key1 key2
# 0 1 a one
# 1 2 a two
# 2 3 b one
# 3 2 b two
# 4 1 a one
# 5 1 a one
# 重复项
print(df[df.duplicated()])
# data1 key1 key2
# 4 1 a one
# 5 1 a one
# 统计重复值
dup=df[df.duplicated()].count()
print(dup) # 最后两项重复
# data1 2
# key1 2
# key2 2
# 去除重复项
nodup=df[-df.duplicated()]
print(nodup)
# data1 key1 key2
# 0 1 a one
# 1 2 a two
# 2 3 b one
# 3 2 b two
方法有二:
1. 在调用duplicated方法后,非重复的元素会被标记为False,而重复的元素会被标记为True
count = 0
for i in users_info['user_id'].duplicated():
if i == True:
count = count + 1
count
【注1】users_info为一个dataframe框,user_id为其中一列
【注2】duplicated( )方法只会把重复的元素标记为True,而不会标记被重复的元素
2.这行代码的速度更快,drop_duplicates(['user_id'])方法为删除user_id列中相同的元素
users_info.shape[0] - users_info.drop_duplicates(['user_id']).shape[0]
【注】shape[0] 为获取行数
上述内容就是如何在pandas中统计重复值的次数,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注亿速云行业资讯频道。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。