这期内容当中小编将会给大家带来有关使用Opencv怎么实现一个图片油画特效,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
首先导入包:
import numpy as np
import cv2
读取原图,得到原图的宽高信息:
img=cv2.imread('ziliao/image00.JPG',1)
imInfo=img.shape
height=imInfo[0]
width=imInfo[1]
完成彩色图片向灰度图片的转化:
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
'''该函数用于颜色的转换,第一个参数为待处理的原图,
第二个参数表示转换的颜色'''
本实例中将图片分割为若干个8×8的小方块,将0-255的灰度值分为8个等级,下面定义了一个数组array1来装载这8个等级中的像素个数,然后找出每个小方块中包含最多像素的等级,如下:
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
dst=np.zeros((height,width,3),np.uint8)
for i in range(4,height-4):
for j in range(4,width-4):
array1 = np.zeros(8, np.uint8) #用于存储每个灰度等级的像素个数
for m in range(-4, 4): #计算8*8小方块中的array1的值
for n in range(-4,4):
p1 = int(gray[i + m, j + n] / 32) #除以32得到该点应该位于第几个灰度等级
array1[p1] = array1[p1] + 1
currentMax = array1[0]
l = 0
for k in range(0,8): #找到像素点最多的那个灰度等级
if currentMax<array1[k]:
currentMax = array1[k]
l = k
#以下方法是简化处理了,也可以按前文所说的那样求均值处理
for m in range(-4,4):
for n in range(-4,4):
if gray[i+m,j+n]>=(l*32) and gray[i+m,j+n]<=((l+1)*32):
(b,g,r) = img[i+m,j+n]
dst[i,j] = (b,g,r)
cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)
左为原图
import numpy as np
import cv2
img=cv2.imread('ziliao/image00.png',1)
imInfo=img.shape
height=imInfo[0]
width=imInfo[1]
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
dst=np.zeros((height,width,3),np.uint8)
for i in range(4,height-4):
for j in range(4,width-4):
array1 = np.zeros(8, np.uint8)
for m in range(-4, 4):
for n in range(-4,4):
p1 = int(gray[i + m, j + n] / 32)
array1[p1] = array1[p1] + 1
currentMax = array1[0]
l = 0
for k in range(0,8):
if currentMax<array1[k]:
currentMax = array1[k]
l = k
for m in range(-4,4):
for n in range(-4,4):
if gray[i+m,j+n]>=(l*32) and gray[i+m,j+n]<=((l+1)*32):
(b,g,r) = img[i+m,j+n]
dst[i,j] = (b,g,r)
cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)
上述就是小编为大家分享的使用Opencv怎么实现一个图片油画特效了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。