温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

怎么在R语言中使用caret包比较ROC曲线

发布时间:2021-04-06 15:37:08 来源:亿速云 阅读:372 作者:Leah 栏目:开发技术

这篇文章将为大家详细讲解有关怎么在R语言中使用caret包比较ROC曲线,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

操作

加载对应的包与将训练控制算法设置为10折交叉验证,重复次数为3:

library(ROCR)
library(e1071)
library("pROC")
library(caret)
library("pROC")
control = trainControl(method = "repaetedcv",
   number = 10,
   repeats =3,
   classProbs = TRUE,
   summaryFunction = twoClassSummary)

使用glm在训练数据集上训练一个分类器

glm.model = train(churn ~ .,
   data= trainset,
   method = "glm",
   metric = "ROC",
   trControl = control)

使用svm在训练数据集上训练一个分类器

svm.model = train(churn ~ .,
   data= trainset,
   method = "svmRadial",
   metric = "ROC",
   trControl = control)

使用rpart函数查看rpart在训练数据集上的运行情况

rpart.model = train(churn ~ .,
   data = trainset,
   method = "svmRadial",
   metric = "ROC",
   trControl = control)

使用不同的已经训练好的数据分类预测:

glm.probs = predict(glm.model,testset[,!names(testset) %in% c("churn")],type = "prob")
svm.probs = predict(svm.model,testset[,!names(testset) %in% c("churn")],type = "prob")
rpart.probs = predict(rpart.model,testset[,!names(testset) %in% c("churn")],type = "prob")

生成每个模型的ROC曲线,将它们绘制在一个图中:

glm.ROC = roc(response = testset[,c("churn")],
  predictor = glm.probs$yes,
  levels = levels(testset[,c("churn")]))
plot(glm.ROC,type = "S",col = "red")
svm.ROC = roc(response = testset[,c("churn")],
  predictor = svm.probs$yes,
  levels = levels(testset[,c("churn")]))
plot(svm.ROC,add = TRUE,col = "green")
rpart.ROC = roc(response = testset[,c("churn")],
  predictor = rpart.probs$yes,
  levels = levels(testset[,c("churn")]))
plot(rpart.ROC,add = TRUE,col = "blue")

怎么在R语言中使用caret包比较ROC曲线

三种分类器的ROC曲线

说明

将不同的分类模型的ROC曲线绘制在同一个图中进行比较,设置训练过程的控制参数为重复三次的10折交叉验证,模型性能的评估参数为twoClassSummary,然后在使用glm,svm,rpart,三种不同的方法建立分类模型。

从图中可以看出,svm对训练集的预测结果(未调优)是三种分类算法里最好的。

补充:R语言利用caret包比较模型性能差异

说明

我们可以通过重采样的方法得对每一个匹配模型的统计信息,包括ROC曲线,灵敏度与特异度,然后基于这些统计信息来比较不同模型的性能差异。

操作

利用上节的信息,准备好glm分类模型,svm分类模型,rpart分类模型,并存放在glm.model,svm.model,rpart.model。

cv.values = resamples(list(glm = glm.model,svm =svm.model,rpart = rpart.model))
> summary(cv.values)
Call:
summary.resamples(object = cv.values)
Models: glm, svm, rpart 
Number of resamples: 30 
ROC 
  Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
glm 0.7597790 0.7927740 0.8040455 0.8106454 0.8347961 0.8760824 0
svm 0.8191998 0.8786439 0.8945208 0.8947360 0.9196775 0.9562556 0
rpart 0.6064540 0.7150320 0.7608241 0.7556544 0.8086731 0.8554750 0
Sens 
  Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
glm 0.08823529 0.1764706 0.2058824 0.2124930 0.2516807 0.3235294 0
svm 0.44117647 0.5294118 0.5882353 0.5956863 0.6470588 0.7941176 0
rpart 0.20000000 0.4117647 0.4705882 0.4787955 0.5514706 0.7352941 0
Spec 
  Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
glm 0.9393939 0.9645119 0.9721581 0.9702721 0.9796954 0.9898477 0
svm 0.9494949 0.9695431 0.9771574 0.9755004 0.9847716 0.9898990 0
rpart 0.9492386 0.9746193 0.9796954 0.9780359 0.9848485 1.0000000 0

使用dotplot函数绘制重采样在ROC曲线度量中的结果:

dotplot(cv.values,metric = "ROC")

怎么在R语言中使用caret包比较ROC曲线

使用箱线图绘制重采样结果:

bwplot(cv.values,layout=c(3,1))

怎么在R语言中使用caret包比较ROC曲线

关于怎么在R语言中使用caret包比较ROC曲线就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI