温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何使用pytorch打印网络回传梯度

发布时间:2021-05-13 15:59:48 来源:亿速云 阅读:996 作者:Leah 栏目:开发技术

如何使用pytorch打印网络回传梯度?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

需求:

打印梯度,检查网络学习情况

net = your_network().cuda()
def train():
 ...
 outputs = net(inputs)
    loss = criterion(outputs, targets)
    loss.backward()
 for name, parms in net.named_parameters(): 
  print('-->name:', name, '-->grad_requirs:',parms.requires_grad, \
   ' -->grad_value:',parms.grad)
 ...

打印结果如下:

name表示网络参数的名字; parms.requires_grad 表示该参数是否可学习,是不是frozen的; parm.grad 打印该参数的梯度值。

如何使用pytorch打印网络回传梯度

补充:pytorch的梯度计算

看代码吧~

import torch
from torch.autograd import Variable
x = torch.Tensor([[1.,2.,3.],[4.,5.,6.]])  #grad_fn是None
x = Variable(x, requires_grad=True)
y = x + 2
z = y*y*3
out = z.mean()
#x->y->z->out
print(x)
print(y)
print(z)
print(out)
#结果:
tensor([[1., 2., 3.],
        [4., 5., 6.]], requires_grad=True)
tensor([[3., 4., 5.],
        [6., 7., 8.]], grad_fn=<AddBackward>)
tensor([[ 27.,  48.,  75.],
        [108., 147., 192.]], grad_fn=<MulBackward>)
tensor(99.5000, grad_fn=<MeanBackward1>)

若是关于graph leaves求导的结果变量是一个标量,那么gradient默认为None,或者指定为“torch.Tensor([1.0])”

若是关于graph leaves求导的结果变量是一个向量,那么gradient是不能缺省的,要是和该向量同纬度的tensor

out.backward()
print(x.grad)
#结果:
tensor([[3., 4., 5.],
        [6., 7., 8.]])
#如果是z关于x求导就必须指定gradient参数:
gradients = torch.Tensor([[2.,1.,1.],[1.,1.,1.]])
z.backward(gradient=gradients)
#若z不是一个标量,那么就先构造一个标量的值:L = torch.sum(z*gradient),再关于L对各个leaf Variable计算梯度
#对x关于L求梯度
x.grad
#结果:
tensor([[36., 24., 30.],
        [36., 42., 48.]])

错误情况

z.backward()
print(x.grad) 
#报错:RuntimeError: grad can be implicitly created only for scalar outputs只能为标量创建隐式变量
    
x1 = Variable(torch.Tensor([[1.,2.,3.],[4.,5.,6.]])) 
x2 = Variable(torch.arange(4).view(2,2).type(torch.float), requires_grad=True)
c = x2.mm(x1)
c.backward(torch.ones_like(c))
# c.backward()
#RuntimeError: grad can be implicitly created only for scalar outputs
print(x2.grad)

pytorch的优点

1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单

看完上述内容,你们掌握如何使用pytorch打印网络回传梯度的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注亿速云行业资讯频道,感谢各位的阅读!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI