温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

pytorch中如何锁死在dataloader

发布时间:2021-05-28 11:51:00 来源:亿速云 阅读:381 作者:小新 栏目:开发技术

这篇文章将为大家详细讲解有关pytorch中如何锁死在dataloader,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

1.问题描述

pytorch中如何锁死在dataloader

2.解决方案

(1)Dataloader里面不用cv2.imread进行读取图片,用cv2.imread还会带来一系列的不方便,比如不能结合torchvision进行数据增强,所以最好用PIL 里面的Image.open来读图片。(并不适用本例)

(2)将DataLoader 里面的参变量num_workers设置为0,但会导致数据的读取很慢,拖慢整个模型的训练。(并不适用本例)

(3)如果用了cv2.imread,不想改代码的,那就加两条语句,来关闭Opencv的多线程:cv2.setNumThreads(0)和cv2.ocl.setUseOpenCL(False)。加了这两条语句之后,并不影响模型的训练。(并不适用本例)

(4)这种情况应该是属于pytorch多线程锁死,在github上看到有该问题,但是没有解决的。

参考建议

首先确保num_works数量低于CPU数量(如果使用Kubernetes,则设置为pod),但是设置得足够高,使数据随时可以用于下一次迭代。

如果GPU在t秒内运行每个迭代,而每个dataloader worker加载/处理单个批处理需要N*t秒,那么您应该将num_workers设置为至少N,以避免GPU停滞。当然,系统中至少要有N个cpu。

不幸的是,如果Dataloader使用任何使用K个线程的库,那么生成的进程数量就会变成num_workersK = NK。这可能比计算机中的cpu数量大得多。这会使pod节流,而Dataloader会变得非常慢。这可能导致Dataloader不返回批处理每t秒,导致GPU暂停。

避免K个线程的一种方法是通过OMP_NUM_THREADS=1 MKL_NUM_THREADS=1 python train.py调用主脚本。这就限制了每个Dataloader工作程序只能使用一个线程,从而避免了使机器不堪重负。你仍然需要有足够的num_workers来满足GPU的需要。

您还应该在_get_item__中优化您的代码,以便每个worker在较短的时间内完成其批处理。请确保worker完成批处理的时间不受从磁盘读取训练数据的时间(特别是当您从网络存储中读取数据时)或网络带宽(当您从网络磁盘读取数据时)的影响。如果您的数据集很小,并且您有足够的RAM,那么可以考虑将数据集移动到RAM(或/tmpfs)中,并从那里读取数据以进行快速访问。对于Kubernetes,您可以创建一个RAM磁盘(在Kubernetes中搜索emptyDir)。

如果你已经优化了你的_get_item__代码,并确保磁盘访问/网络访问不是罪魁祸首,但仍然会出现问题,你将需要请求更多的cpu(为了一个Kubernetes pod),或者将你的GPU移动到拥有更多cpu的机器上。

另一个选项是减少batch_size,这样每个worker要做的工作就会减少,并且可以更快地完成预处理。后一种选择在某些情况下是不可取的,因为会有空闲的GPU内存不被利用。

你也可以考虑离线做一些预处理,减轻每个worker的负担。例如,如果每个worker正在读取一个wav文件并计算音频文件的谱图,那么可以考虑离线预先计算谱图,只从工作者的磁盘中读取计算的谱图。这将减少每个worker的工作量。

你也可以考虑将dataloader里的设置pin_memory=False。

补充:pytorch加载训练数据集dataloader操作耗费时间太久,该如何解决?

笔者在使用pytorch加载训练数据进行模型训练的时候,发现数据加载需要耗费太多时间,该如何缩短数据加载的时间消耗呢?经过查询相关文档,

总结实际操作过程如下:

1、尽量将jpg等格式的文件保存为bmp文件,可以降低解码时间;

2、dataloader函数中增加num_workers参数,该参数表示加载数据的线程数,建议设置为该系统中的CPU核心数,若CPU很强劲,而且内存很大,也可以考虑将该数值设置的更大一些。

train_loader=torch.utils.data.DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)

修改为:

train_loader=torch.utils.data.DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True,num_workers=multiprocessing.cpu_count())

虽然使用dataloader达到了iter(Dataset)的读取并行,但是没有实现在GPU运算时异步读取数据,可以考虑使用non_blocking实现。

dataloader = data.Dataloader(dataset, batch_size = batch_size, num_workers = workers)
for epoch in range(epochs):
    for batch_idx, (images, labels) in enumerate(dataloader):
        images = images.to(device)
        labels = labels.to(device)

改为:

dataloader = data.Dataloader(dataset, batch_size = batch_size, num_workers = workers, pin_memory = True)
for epoch in range(epochs):
    for batch_idx, (images, labels) in enumerate(dataloader):
        images = images.to(device, non_blocking=True)
        labels = labels.to(device, non_blocking=True)

需要注意的是:只有pin_memory=True并且num_workers>0时non_blocking才会有效。

关于“pytorch中如何锁死在dataloader”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI