温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python中如何使用kmeans聚类

发布时间:2021-06-04 09:38:05 来源:亿速云 阅读:244 作者:小新 栏目:编程语言

这篇文章给大家分享的是有关Python中如何使用kmeans聚类的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

1、用kmeans分为五个聚类,每个聚类内部的数据为一个list,五个list组成聚类中心。

k = 5  # 聚类中心数
kmeans_model = KMeans(n_clusters=k, n_jobs=4, random_state=123)
# 聚类中心数,并行的CPU核的数量,随机数种子
fit_kmeans = kmeans_model.fit(airline_scale)  # 模型训练
print(kmeans_model.cluster_centers_)  # 查看聚类中心
print(kmeans_model.labels_)  # 查看样本的类别标签

2、label显示按照kmeans划分之后每个数据属于哪个聚类。

# 统计不同类别样本的数目
r1 = pd.Series(kmeans_model.labels_).value_counts()
print('最终每个类别的数目为:\n', r1)
result = kmeans_model.predict([[1.5, 1.5, 1.5, 1.5, 1.5]])
print(result)
# 最终确定在五个参数都是1.5的情况下的用户属于类别1
3\r1显示每个聚类内部的元素个数,同时测试一组特定特征值的数据会被分配到哪个组中。

感谢各位的阅读!关于“Python中如何使用kmeans聚类”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI