温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何使用来解析JavaScript

发布时间:2021-11-16 17:28:24 来源:亿速云 阅读:156 作者:柒染 栏目:web开发

本篇文章为大家展示了如何使用来解析JavaScript,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

Talk

因为最近工作上有需要使用解析 JavaScript  的代码,大部分情况使用正则表达式匹配就可以处理,但是一旦依赖于代码上下文的内容时,正则或者简单的字符解析就很力不从心了,这个时候需要一个语言解析器来获取整一个  AST(abstract syntax tree)。

然后我找到了多个使用 JavaScript 编写的 JavaScript 解析器:

  • Esprima

  • Acorn

  • UglifyJS 2

  • Shift

从提交记录来看,维护情况都蛮好的,ES 各种发展的特性都跟得上,我分别都简单了解了一下,聊聊他们的一些情况。

<!--more-->

Esprima 是很经典的一个解析器,Acorn 在它之后诞生,都是几年前的事情了。按照 Acorn 作者的说法,当时造这个轮子更多只是好玩,速度可以和  Esprima 媲美,但是实现代码更少。其中比较关键的点是这两个解析器出来的 AST 结果(对,只是 AST,tokens 不一样)都是符合 The  Estree Spec 规范(这是 Mozilla 的工程师给出的 SpiderMonkey 引擎输出的 JavaScript AST  的规范文档,也可以参考:SpiderMonkey in MDN)的,也就是得到的结果在很大部分上是兼容的。

现在很出名的 Webpack 解析代码时用的也是 Acorn。

至于 Uglify,很出名的一个 JavaScript 代码压缩器,其实它自带了一个代码解析器,也可以输出  AST,但是它的功能更多还是用于压缩代码,如果拿来解析代码感觉不够纯粹。

Shift 这个没做多少了解,只知道他定义了自己的一套 AST 规范。

Esprima 官网上有一个性能测试,我在 chrome 上跑的结果如下:

<img src="http://ww1.sinaimg.cn/large/0... alt="性能测试"  style="width:100%;">

可见,Acorn 的性能很不错,而且还有一个 Estree 的规范呢(规范很重要,我个人觉得遵循通用的规范是代码复用的重要基础),所以我就直接选用  Acorn 来做代码解析了。

图中做性能对比的还有 Google 的 Traceur,它更多是一个 ES6 to ES5 的 compiler,于我们想要找的解析器定位不符。

下面进入正题,如何使用 Acorn 来解析 JavaScript。

API

解析器的 API 都是很简单的:

const ast = acorn.parse(code, options)

Acorn 的配置项蛮多的,里边还包括了一些事件可以设置回调函数。我们挑几个比较重要的讲下:

  • ecmaVersion

字面意义,很好理解,就是设置你要解析的 JavaScript 的 ECMA 版本。默认是 ES7。

  • sourceType

这个配置项有两个值:module 和 script,默认是 script。

主要是严格模式和 import/export 的区别。ES6 中的模块是严格模式,也就是你无须添加 use strict。我们通常浏览器中使用的  script 是没有 import/export 语法的。

所以,选择了 script 则出现 import/export 会报错,可以使用严格模式声明,选择了  module,则不用严格模式声明,可以使用import/export 语法。

  • locations

默认值是 false,设置为 true 之后会在 AST 的节点中携带多一个 loc 对象来表示当前的开始和结束的行数和列数。

  • onComment

传入一个回调函数,每当解析到代码中的注释时会触发,可以获取当年注释内容,参数列表是:[block, text, start, end]。

block 表示是否是块注释,text 是注释内容,start 和 end 是注释开始和结束的位置。

上边提及的 Espree 需要 Esprima 的 attachComment 的配置项,设置为 true 后,Esprima  会在代码解析结果的节点中携带注释相关信息(trailingComments 和 leadingComments)。Espree 则是利用 Acorn 的  onComment 配置来实现这个 Esprima 特性的兼容。

解析器通常还会有一个获取词法分析结果的接口:

const tokens = [...acorn.tokenizer(code, options)]

tokenizer 方法的第二个参数也能够配置 locations。

词法结果 token 和 Esprima 的结果数据结构上有一定的区别(Espree 又是做了这一层的兼容),有兴趣了解的可以看下 Esprima  的解析结果:http://esprima.org/demo/parse... 。

至于 Acorn 解析的 AST 和 token 的内容我们接下来详述。

Token

我找了半天,没找到关于 token 数据结构的详细介绍,只能自己动手来看一下了。

我用来测试解析的代码是:

import "hello.js"  var a = 2;  // test function name() { console.log(arguments); }

解析出来的 token 数组是一个个类似这样的对象:

Token {     type:      TokenType {        label: 'import',        keyword: 'import',        beforeExpr: false,        startsExpr: false,        isLoop: false,        isAssign: false,        prefix: false,        postfix: false,        binop: null,        updateContext: null },     value: 'import',     start: 5,     end: 11 },

看上去其实很好理解对不对,在 type 对应的对象中,label 表示当前标识的一个类型,keyword 就是关键词,像例子中的import,或者  function 之类的。

value 则是当前标识的值,start/end 分别是开始和结束的位置。

通常我们需要关注的就是 label/keyword/value 这些了。其他的详细可以参考源码:tokentype.js。

The Estree Spec

这一部分是重头戏,因为实际上我需要的还是解析出来的 AST。最原滋原味的内容来自于:The Estree Spec,我只是阅读了之后的搬运工。

提供了标准文档的好处是,很多东西有迹可循,这里还有一个工具,用于把满足 Estree 标准的 AST 转换为 ESMAScript  代码:escodegen。

好吧,回到正题,我们先来看一下 ES5 的部分,可以在 Esprima: Parser 这个页面测试各种代码的解析结果。

符合这个规范的解析出来的 AST 节点用 Node 对象来标识,Node 对象应该符合这样的接口:

interface Node {     type: string;     loc: SourceLocation | null; }

type 字段表示不同的节点类型,下边会再讲一下各个类型的情况,分别对应了 JavaScript 中的什么语法。

loc 字段表示源码的位置信息,如果没有相关信息的话为 null,否则是一个对象,包含了开始和结束的位置。接口如下:

interface SourceLocation {     source: string | null;     start: Position;     end: Position; }

这里的 Position 对象包含了行和列的信息,行从 1 开始,列从 0 开始:

interface Position {     line: number; // >= 1     column: number; // >= 0 }

好了,基础部分就是这样,接下来看各种类型的节点,顺带温习一下 JavaScript  语法的一些东西吧。对于这里每一部分的内容,会简单谈一下,但不会展开(内容不少),对 JavaScript 了解的人很容易就明白的。

我觉得看完就像把 JavaScript 的基础语法整理了一遍。

Identifier

标识符,我觉得应该是这么叫的,就是我们写 JS 时自定义的名称,如变量名,函数名,属性名,都归为标识符。相应的接口是这样的:

interface Identifier <: Expression, Pattern {     type: "Identifier";     name: string; }

一个标识符可能是一个表达式,或者是解构的模式(ES6 中的解构语法)。我们等会会看到 Expression 和 Pattern 相关的内容的。

Literal

字面量,这里不是指 [] 或者 {} 这些,而是本身语义就代表了一个值的字面量,如 1,“hello”, true 这些,还有正则表达式(有一个扩展的  Node 来表示正则表达式),如 /d?/。我们看一下文档的定义:

interface Literal <: Expression {     type: "Literal";     value: string | boolean | null | number | RegExp; }

value 这里即对应了字面量的值,我们可以看出字面量值的类型,字符串,布尔,数值,null 和正则。

RegExpLiteral

这个针对正则字面量的,为了更好地来解析正则表达式的内容,添加多一个 regex 字段,里边会包括正则本身,以及正则的flags。

interface RegExpLiteral <: Literal {   regex: {     pattern: string;     flags: string;   }; }

Programs

一般这个是作为跟节点的,即代表了一棵完整的程序代码树。

interface Program <: Node {     type: "Program";     body: [ Statement ]; }

body 属性是一个数组,包含了多个 Statement(即语句)节点。

Functions

函数声明或者函数表达式节点。

interface Function <: Node {     id: Identifier | null;     params: [ Pattern ];     body: BlockStatement; }

id 是函数名,params 属性是一个数组,表示函数的参数。body 是一个块语句。

有一个值得留意的点是,你在测试过程中,是不会找到 type: "Function" 的节点的,但是你可以找到 type:  "FunctionDeclaration" 和 type:  "FunctionExpression",因为函数要么以声明语句出现,要么以函数表达式出现,都是节点类型的组合类型,后边会再提及  FunctionDeclaration 和 FunctionExpression 的相关内容。

这让人感觉这个文档规划得蛮细致的,函数名,参数和函数块是属于函数部分的内容,而声明或者表达式则有它自己需要的东西。

Statement

语句节点没什么特别的,它只是一个节点,一种区分,但是语句有很多种,下边会详述。

interface Statement <: Node { }

ExpressionStatement

表达式语句节点,a = a + 1 或者 a++ 里边会有一个 expression 属性指向一个表达式节点对象(后边会提及表达式)。

interface ExpressionStatement <: Statement {     type: "ExpressionStatement";     expression: Expression; }

BlockStatement

块语句节点,举个例子:if (...) { // 这里是块语句的内容 },块里边可以包含多个其他的语句,所以有一个 body  属性,是一个数组,表示了块里边的多个语句。

interface BlockStatement <: Statement {     type: "BlockStatement";     body: [ Statement ]; }

EmptyStatement

一个空的语句节点,没有执行任何有用的代码,例如一个单独的分号 ;

interface EmptyStatement  <: Statement {     type: "EmptyStatement "; }

DebuggerStatement

debugger,就是表示这个,没有其他了。

interface DebuggerStatement <: Statement {     type: "DebuggerStatement"; }

WithStatement

with 语句节点,里边有两个特别的属性,object 表示 with 要使用的那个对象(可以是一个表达式),body 则是对应 with  后边要执行的语句,一般会是一个块语句。

interface WithStatement <: Statement {     type: "WithStatement";     object: Expression;     body: Statement; }

下边是控制流的语句:

ReturnStatement

返回语句节点,argument 属性是一个表达式,代表返回的内容。

interface ReturnStatement <: Statement {     type: "ReturnStatement";     argument: Expression | null; }

LabeledStatement

label 语句,平时可能会比较少接触到,举个例子:

loop: for(let i = 0; i < len; i++) {     // ...     for (let j = 0; j < min; j++) {         // ...         break loop;     } }

这里的 loop 就是一个 label 了,我们可以在循环嵌套中使用 break loop 来指定跳出哪个循环。所以这里的 label  语句指的就是loop: ... 这个。

一个 label 语句节点会有两个属性,一个 label 属性表示 label 的名称,另外一个 body 属性指向对应的语句,通常是一个循环语句或者  switch 语句。

interface LabeledStatement <: Statement {     type: "LabeledStatement";     label: Identifier;     body: Statement; }

BreakStatement

break 语句节点,会有一个 label 属性表示需要的 label 名称,当不需要 label 的时候(通常都不需要),便是 null。

interface BreakStatement <: Statement {     type: "BreakStatement";     label: Identifier | null; }

ContinueStatement

continue 语句节点,和 break 类似。

interface ContinueStatement <: Statement {     type: "ContinueStatement";     label: Identifier | null; }

下边是条件语句:

IfStatement

if 语句节点,很常见,会带有三个属性,test 属性表示 if (...) 括号中的表达式。

consequent 属性是表示条件为 true 时的执行语句,通常会是一个块语句。

alternate 属性则是用来表示 else 后跟随的语句节点,通常也会是块语句,但也可以又是一个 if 语句节点,即类似这样的结构:

if (a) { //... } else if (b) { // ... }。

alternate 当然也可以为 null。

interface IfStatement <: Statement {     type: "IfStatement";     test: Expression;     consequent: Statement;     alternate: Statement | null; }

SwitchStatement

switch 语句节点,有两个属性,discriminant 属性表示 switch 语句后紧随的表达式,通常会是一个变量,cases 属性是一个case  节点的数组,用来表示各个 case 语句。

interface SwitchStatement <: Statement {     type: "SwitchStatement";     discriminant: Expression;     cases: [ SwitchCase ]; }

SwitchCase

switch 的 case 节点。test 属性代表这个 case 的判断表达式,consequent 则是这个 case 的执行语句。

当 test 属性是 null 时,则是表示 default 这个 case 节点。

interface SwitchCase <: Node {     type: "SwitchCase";     test: Expression | null;     consequent: [ Statement ]; }

下边是异常相关的语句:

ThrowStatement

throw 语句节点,argument 属性用以表示 throw 后边紧跟的表达式。

interface ThrowStatement <: Statement {     type: "ThrowStatement";     argument: Expression; }

TryStatement

try 语句节点,block 属性表示 try 的执行语句,通常是一个块语句。

hanlder 属性是指 catch 节点,finalizer 是指 finally 语句节点,当 hanlder 为 null 时,finalizer  必须是一个块语句节点。

interface TryStatement <: Statement {     type: "TryStatement";     block: BlockStatement;     handler: CatchClause | null;     finalizer: BlockStatement | null; }

CatchClause

catch 节点,param 用以表示 catch 后的参数,body 则表示 catch 后的执行语句,通常是一个块语句。

interface CatchClause <: Node {     type: "CatchClause";     param: Pattern;     body: BlockStatement; }

下边是循环语句:

WhileStatement

while 语句节点,test 表示括号中的表达式,body 是表示要循环执行的语句。

interface WhileStatement <: Statement {     type: "WhileStatement";     test: Expression;     body: Statement; }

DoWhileStatement

do/while 语句节点,和 while 语句类似。

interface DoWhileStatement <: Statement {     type: "DoWhileStatement";     body: Statement;     test: Expression; }

ForStatement

for 循环语句节点,属性 init/test/update 分别表示了 for  语句括号中的三个表达式,初始化值,循环判断条件,每次循环执行的变量更新语句(init 可以是变量声明或者表达式)。这三个属性都可以为 null,即  for(;;){}。

body 属性用以表示要循环执行的语句。

interface ForStatement <: Statement {     type: "ForStatement";     init: VariableDeclaration | Expression | null;     test: Expression | null;     update: Expression | null;     body: Statement; }

ForInStatement

for/in 语句节点,left 和 right 属性分别表示在 in 关键词左右的语句(左侧可以是一个变量声明或者表达式)。body  依旧是表示要循环执行的语句。

interface ForInStatement <: Statement {     type: "ForInStatement";     left: VariableDeclaration |  Pattern;     right: Expression;     body: Statement; }

Declarations

声明语句节点,同样也是语句,只是一个类型的细化。下边会介绍各种声明语句类型。

interface Declaration <: Statement { }

FunctionDeclaration

函数声明,和之前提到的 Function 不同的是,id 不能为 null。

interface FunctionDeclaration <: Function, Declaration {     type: "FunctionDeclaration";     id: Identifier; }

VariableDeclaration

变量声明,kind 属性表示是什么类型的声明,因为 ES6 引入了 const/let。

declarations 表示声明的多个描述,因为我们可以这样:let a = 1, b = 2;。

interface VariableDeclaration <: Declaration {     type: "VariableDeclaration";     declarations: [ VariableDeclarator ];     kind: "var"; }

VariableDeclarator

变量声明的描述,id 表示变量名称节点,init 表示初始值的表达式,可以为 null。

interface VariableDeclarator <: Node {     type: "VariableDeclarator";     id: Pattern;     init: Expression | null; }

Expressions

表达式节点。

interface Expression <: Node { }

ThisExpression

表示 this。

interface ThisExpression <: Expression {     type: "ThisExpression"; }

ArrayExpression

数组表达式节点,elements 属性是一个数组,表示数组的多个元素,每一个元素都是一个表达式节点。

interface ArrayExpression <: Expression {     type: "ArrayExpression";     elements: [ Expression | null ]; }

ObjectExpression

对象表达式节点,property 属性是一个数组,表示对象的每一个键值对,每一个元素都是一个属性节点。

interface ObjectExpression <: Expression {     type: "ObjectExpression";     properties: [ Property ]; }

Property

对象表达式中的属性节点。key 表示键,value 表示值,由于 ES5 语法中有 get/set 的存在,所以有一个 kind  属性,用来表示是普通的初始化,或者是 get/set。

interface Property <: Node {     type: "Property";     key: Literal | Identifier;     value: Expression;     kind: "init" | "get" | "set"; }

FunctionExpression

函数表达式节点。

interface FunctionExpression <: Function, Expression {     type: "FunctionExpression"; }

下边是一元运算符相关的表达式部分:

UnaryExpression

一元运算表达式节点(++/-- 是 update 运算符,不在这个范畴内),operator 表示运算符,prefix  表示是否为前缀运算符。argument 是要执行运算的表达式。

interface UnaryExpression <: Expression {     type: "UnaryExpression";     operator: UnaryOperator;     prefix: boolean;     argument: Expression; }

UnaryOperator

一元运算符,枚举类型,所有值如下:

enum UnaryOperator {     "-" | "+" | "!" | "~" | "typeof" | "void" | "delete" }

UpdateExpression

update 运算表达式节点,即 ++/--,和一元运算符类似,只是 operator 指向的节点对象类型不同,这里是 update 运算符。

interface UpdateExpression <: Expression {     type: "UpdateExpression";     operator: UpdateOperator;     argument: Expression;     prefix: boolean; }

UpdateOperator

update 运算符,值为 ++ 或 --,配合 update 表达式节点的 prefix 属性来表示前后。

enum UpdateOperator {   "++" | "--" }

下边是二元运算符相关的表达式部分:

BinaryExpression

二元运算表达式节点,left 和 right 表示运算符左右的两个表达式,operator 表示一个二元运算符。

interface BinaryExpression <: Expression {     type: "BinaryExpression";     operator: BinaryOperator;     left: Expression;     right: Expression; }

BinaryOperator

二元运算符,所有值如下:

enum BinaryOperator {     "==" | "!=" | "===" | "!=="          | "<" | "<=" | ">" | ">="          | "<<" | ">>" | ">>>"          | "+" | "-" | "*" | "/" | "%"          | "|" | "^" | "&" | "in"          | "instanceof" }

AssignmentExpression

赋值表达式节点,operator 属性表示一个赋值运算符,left 和 right 是赋值运算符左右的表达式。

interface AssignmentExpression <: Expression {     type: "AssignmentExpression";     operator: AssignmentOperator;     left: Pattern | Expression;     right: Expression; }

AssignmentOperator

赋值运算符,所有值如下:(常用的并不多)

enum AssignmentOperator {     "=" | "+=" | "-=" | "*=" | "/=" | "%="         | "<<=" | ">>=" | ">>>="         | "|=" | "^=" | "&=" }

LogicalExpression

逻辑运算表达式节点,和赋值或者二元运算类型,只不过 operator 是逻辑运算符类型。

interface LogicalExpression <: Expression {     type: "LogicalExpression";     operator: LogicalOperator;     left: Expression;     right: Expression; }

LogicalOperator

逻辑运算符,两种值,即与或。

enum LogicalOperator {     "||" | "&&" }

MemberExpression

成员表达式节点,即表示引用对象成员的语句,object 是引用对象的表达式节点,property 是表示属性名称,computed  如果为false,是表示 . 来引用成员,property 应该为一个 Identifier 节点,如果 computed 属性为 true,则是 []  来进行引用,即property 是一个 Expression 节点,名称是表达式的结果值。

interface MemberExpression <: Expression, Pattern {     type: "MemberExpression";     object: Expression;     property: Expression;     computed: boolean; }

下边是其他的一些表达式:

ConditionalExpression

条件表达式,通常我们称之为三元运算表达式,即 boolean ? true : false。属性参考条件语句。

interface ConditionalExpression <: Expression {     type: "ConditionalExpression";     test: Expression;     alternate: Expression;     consequent: Expression; }

CallExpression

函数调用表达式,即表示了 func(1, 2) 这一类型的语句。callee 属性是一个表达式节点,表示函数,arguments  是一个数组,元素是表达式节点,表示函数参数列表。

interface CallExpression <: Expression {     type: "CallExpression";     callee: Expression;     arguments: [ Expression ]; }

NewExpression

new 表达式。

interface NewExpression <: CallExpression {     type: "NewExpression"; }

SequenceExpression

这个就是逗号运算符构建的表达式(不知道确切的名称),expressions 属性为一个数组,即表示构成整个表达式,被逗号分割的多个表达式。

interface SequenceExpression <: Expression {     type: "SequenceExpression";     expressions: [ Expression ]; }

Patterns

模式,主要在 ES6 的解构赋值中有意义,在 ES5 中,可以理解为和 Identifier 差不多的东西。

interface Pattern <: Node { }

这一部分的内容比较多,但都可以举一反三,写这个的时候我就当把 JavaScript 语法再复习一遍。这个文档还有 ES2015,ES2016,ES2017  相关的内容,涉及的东西也蛮多,但是理解了上边的这一些,然后从语法层面去思考这个文档,其他的内容也就很好理解了,这里略去,有需要请参阅:The Estree  Spec。

Plugins

回到我们的主角,Acorn,提供了一种扩展的方式来编写相关的插件:Acorn Plugins。

我们可以使用插件来扩展解析器,来解析更多的一些语法,如 .jsx 语法,有兴趣的看看这个插件:acorn-jsx。

官方表示 Acorn 的插件是用于方便扩展解析器,但是需要对 Acorn  内部的运行***比较了解,扩展的方式会在原本的基础上重新定义一些方法。这里不展开讲了,如果我需要插件的话,会再写文章聊聊这个东西。

Examples

现在我们来看一下如何应用这个解析器,例如我们需要用来解析出一个符合 CommonJS 规范的模块依赖了哪些模块,我们可以用 Acorn 来解析  require 这个函数的调用,然后取出调用时的传入参数,便可以获取依赖的模块。

下边是示例代码:

// 遍历所有节点的函数 function walkNode(node, callback) {   callback(node)    // 有 type 字段的我们认为是一个节点   Object.keys(node).forEach((key) => {     const item = node[key]     if (Array.isArray(item)) {       item.forEach((sub) => {         sub.type && walkNode(sub, callback)       })     }      item && item.type && walkNode(item, callback)   }) }  function parseDependencies(str) {   const ast = acorn.parse(str, { ranges: true })   const resource = [] // 依赖列表    // 从根节点开始   walkNode(ast, (node) => {     const callee = node.callee     const args = node.arguments      // require 我们认为是一个函数调用,并且函数名为 require,参数只有一个,且必须是字面量     if (       node.type === 'CallExpression' &&       callee.type === 'Identifier' &&       callee.name === 'require' &&       args.length === 1 &&       args[0].type === 'Literal'     ) {       const args = node.arguments        // 获取依赖的相关信息       resource.push({         string: str.substring(node.range[0], node.range[1]),         path: args[0].value,         start: node.range[0],         end: node.range[1]       })     }   })    return resource }

这只是简单的一个情况的处理,但是已经给我们呈现了如何使用解析器,Webpack 则在这个的基础上做了更多的东西,包括 var r = require;  r('a') 或者 require.async('a') 等的处理。

上述内容就是如何使用来解析JavaScript,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI