这篇文章给大家分享的是有关pandas中如何使用merge函数的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
merge函数方法类似SQL里的join,可以是pd.merge或者df.merge,区别就在于后者待合并的数据是
pd.merge(
left: 'DataFrame | Series',
right: 'DataFrame | Series',
how: 'str' = 'inner',
on: 'IndexLabel | None' = None,
left_on: 'IndexLabel | None' = None,
right_on: 'IndexLabel | None' = None,
left_index: 'bool' = False,
right_index: 'bool' = False,
sort: 'bool' = False,
suffixes: 'Suffixes' = ('_x', '_y'),
copy: 'bool' = True,
indicator: 'bool' = False,
validate: 'str | None' = None,
) -> 'DataFrame'
在函数方法中,关键参数含义如下:
left: 用于连接的左侧数据
right: 用于连接的右侧数据
how: 数据连接方式,默认为 inner,可选outer、left和right
on: 连接关键字段,左右侧数据中需要都存在,否则就用left_on和right_on
left_on: 左侧数据用于连接的关键字段
right_on: 右侧数据用于连接的关键字段
left_index: True表示左侧索引为连接关键字段
right_index: True表示右侧索引为连接关键字段
suffixes: ‘Suffixes’ = (’_x’, ‘_y’),可以自由指定,就是同列名合并后列名显示后缀
indicator: 是否显示合并后某行数据的归属来源
接下来,我们就对该函数功能进行演示
基础合并
In [55]: df1 = pd.DataFrame({'key': ['foo', 'bar', 'bal'],
...: 'value2': [1, 2, 3]})
In [56]: df2 = pd.DataFrame({'key': ['foo', 'bar', 'baz'],
...: 'value1': [5, 6, 7]})
In [57]: df1.merge(df2)
Out[57]:
key value2 value1
0 foo 1 5
1 bar 2 6
其他连接方式
In [58]: df1.merge(df2, how='left')
Out[58]:
key value2 value1
0 foo 1 5.0
1 bar 2 6.0
2 bal 3 NaN
In [59]: df1.merge(df2, how='right')
Out[59]:
key value2 value1
0 foo 1.0 5
1 bar 2.0 6
2 baz NaN 7
In [60]: df1.merge(df2, how='outer')
Out[60]:
key value2 value1
0 foo 1.0 5.0
1 bar 2.0 6.0
2 bal 3.0 NaN
3 baz NaN 7.0
In [61]: df1.merge(df2, how='cross')
Out[61]:
key_x value2 key_y value1
0 foo 1 foo 5
1 foo 1 bar 6
2 foo 1 baz 7
3 bar 2 foo 5
4 bar 2 bar 6
5 bar 2 baz 7
6 bal 3 foo 5
7 bal 3 bar 6
8 bal 3 baz 7
指定连接键
可以指定单个连接键,也可以指定多个连接键
In [62]: df1 = pd.DataFrame({'lkey1': ['foo', 'bar', 'bal'],
...: 'lkey2': ['a', 'b', 'c'],
...: 'value2': [1, 2, 3]})
In [63]: df2 = pd.DataFrame({'rkey1': ['foo', 'bar', 'baz'],
...: 'rkey2': ['a', 'b', 'c'],
...: 'value2': [5, 6, 7]})
In [64]: df1
Out[64]:
lkey1 lkey2 value2
0 foo a 1
1 bar b 2
2 bal c 3
In [65]: df2
Out[65]:
rkey1 rkey2 value2
0 foo a 5
1 bar b 6
2 baz c 7
In [66]: df1.merge(df2, left_on='lkey1', right_on='rkey1')
Out[66]:
lkey1 lkey2 value2_x rkey1 rkey2 value2_y
0 foo a 1 foo a 5
1 bar b 2 bar b 6
In [67]: df1.merge(df2, left_on=['lkey1','lkey2'], right_on=['rkey1','rkey2'])
Out[67]:
lkey1 lkey2 value2_x rkey1 rkey2 value2_y
0 foo a 1 foo a 5
1 bar b 2 bar b 6
指定索引为键
Out[68]: df1.merge(df2, left_index=True, right_index=True)
Out[68]:
lkey1 lkey2 value2_x rkey1 rkey2 value2_y
0 foo a 1 foo a 5
1 bar b 2 bar b 6
2 bal c 3 baz c 7
设置重复列后缀
In [69]: df1.merge(df2, left_on='lkey1', right_on='rkey1', suffixes=['左','右'])
Out[69]:
lkey1 lkey2 value2左 rkey1 rkey2 value2右
0 foo a 1 foo a 5
1 bar b 2 bar b 6
连接指示
新增一列用于显示数据来源
In [70]: df1.merge(df2, left_on='lkey1', right_on='rkey1', suffixes=['左','右'], how='outer',
...: indicator=True
...: )
Out[70]:
lkey1 lkey2 value2左 rkey1 rkey2 value2右 _merge
0 foo a 1.0 foo a 5.0 both
1 bar b 2.0 bar b 6.0 both
2 bal c 3.0 NaN NaN NaN left_only
3 NaN NaN NaN baz c 7.0 right_only
感谢各位的阅读!关于“pandas中如何使用merge函数”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
原文链接:https://www.freebuf.com/articles/system/166472.html