温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

torch.div怎么使用

发布时间:2021-12-27 14:25:53 来源:亿速云 阅读:119 作者:iii 栏目:大数据

本篇内容介绍了“torch.div怎么使用”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

torch.div(a, b) ,a和b的尺寸是广播一致的,而且a和b必须是类型一致的,就是如果a是FloatTensor那么b也必须是FloatTensor,可以使用tensor.to(torch.float64)进行转换。

>>> a = torch.randn(4, 4)
>>> a
tensor([[-0.3711, -1.9353, -0.4605, -0.2917],
        [ 0.1815, -1.0111,  0.9805, -1.5923],
        [ 0.1062,  1.4581,  0.7759, -1.2344],
        [-0.1830, -0.0313,  1.1908, -1.4757]])
>>> b = torch.randn(4)
>>> b
tensor([ 0.8032,  0.2930, -0.8113, -0.2308])
>>> torch.div(a, b)
tensor([[-0.4620, -6.6051,  0.5676,  1.2637],
        [ 0.2260, -3.4507, -1.2086,  6.8988],
        [ 0.1322,  4.9764, -0.9564,  5.3480],
        [-0.2278, -0.1068, -1.4678,  6.3936]])

torch.div(a,0.6) 就是直接除以一个数字。

>>> a = torch.randn(5)
>>> a
tensor([ 0.3810,  1.2774, -0.2972, -0.3719,  0.4637])
>>> torch.div(a, 0.5)
tensor([ 0.7620,  2.5548, -0.5944, -0.7439,  0.9275])

“torch.div怎么使用”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI