温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python中怎么实现一个K线合成函数

发布时间:2021-07-14 14:14:24 来源:亿速云 阅读:341 作者:Leah 栏目:互联网科技

Python中怎么实现一个K线合成函数,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

JavaScript版本

  function GetNewCycleRecords (sourceRecords, targetCycle) {    // K线合成函数
      var ret = []
      
      // 首先获取源K线数据的周期
      if (!sourceRecords || sourceRecords.length < 2) {
          return null
      }
      var sourceLen = sourceRecords.length
      var sourceCycle = sourceRecords[sourceLen - 1].Time - sourceRecords[sourceLen - 2].Time

      if (targetCycle % sourceCycle != 0) {
          Log("targetCycle:", targetCycle)
          Log("sourceCycle:", sourceCycle)
          throw "targetCycle is not an integral multiple of sourceCycle."
      }

      if ((1000 * 60 * 60) % targetCycle != 0 && (1000 * 60 * 60 * 24) % targetCycle != 0) {
          Log("targetCycle:", targetCycle)
          Log("sourceCycle:", sourceCycle)
          Log((1000 * 60 * 60) % targetCycle, (1000 * 60 * 60 * 24) % targetCycle)
          throw "targetCycle cannot complete the cycle."
      }

      var multiple = targetCycle / sourceCycle


      var isBegin = false 
      var count = 0
      var high = 0 
      var low = 0 
      var open = 0
      var close = 0 
      var time = 0
      var vol = 0
      for (var i = 0 ; i < sourceLen ; i++) {
          // 获取 时区偏移数值
          var d = new Date()
          var n = d.getTimezoneOffset()

          if (((1000 * 60 * 60 * 24) - sourceRecords[i].Time % (1000 * 60 * 60 * 24) + (n * 1000 * 60)) % targetCycle == 0) {
              isBegin = true
          }

          if (isBegin) {
              if (count == 0) {
                  high = sourceRecords[i].High
                  low = sourceRecords[i].Low
                  open = sourceRecords[i].Open
                  close = sourceRecords[i].Close
                  time = sourceRecords[i].Time
                  vol = sourceRecords[i].Volume

                  count++
              } else if (count < multiple) {
                  high = Math.max(high, sourceRecords[i].High)
                  low = Math.min(low, sourceRecords[i].Low)
                  close = sourceRecords[i].Close
                  vol += sourceRecords[i].Volume

                  count++
              }

              if (count == multiple || i == sourceLen - 1) {
                  ret.push({
                      High : high,
                      Low : low,
                      Open : open,
                      Close : close,
                      Time : time,
                      Volume : vol,
                  })
                  count = 0
              }
          }
      }

      return ret 
  }

有JavaScript算法,对于Python其实逐行翻译移植就可以了,遇到JavaScript的内置函数,或者固有方法,对应的去Python中查找对应的方法即可,所以移植还是比较容易的。
算法逻辑完全一模一样,只是JavaScript的函数调用var n = d.getTimezoneOffset(),移植到Python时,使用Python的time库中的n = time.altzone代替。其它差异仅仅是语言语法方面的了(例如for循环的使用,布尔值的差别,逻辑与、逻辑非、逻辑或的使用差别等..)。

移植后的Python代码:

import time

def GetNewCycleRecords(sourceRecords, targetCycle):
    ret = []

    # 首先获取源K线数据的周期
    if not sourceRecords or len(sourceRecords) < 2 : 
        return None

    sourceLen = len(sourceRecords)
    sourceCycle = sourceRecords[-1]["Time"] - sourceRecords[-2]["Time"]

    if targetCycle % sourceCycle != 0 :
        Log("targetCycle:", targetCycle)
        Log("sourceCycle:", sourceCycle)
        raise "targetCycle is not an integral multiple of sourceCycle."

    if (1000 * 60 * 60) % targetCycle != 0 and (1000 * 60 * 60 * 24) % targetCycle != 0 : 
        Log("targetCycle:", targetCycle)
        Log("sourceCycle:", sourceCycle)
        Log((1000 * 60 * 60) % targetCycle, (1000 * 60 * 60 * 24) % targetCycle)
        raise "targetCycle cannot complete the cycle."
    
    multiple = targetCycle / sourceCycle

    isBegin = False
    count = 0 
    barHigh = 0 
    barLow = 0 
    barOpen = 0
    barClose = 0 
    barTime = 0 
    barVol = 0 

    for i in range(sourceLen) : 
        # 获取时区偏移数值
        n = time.altzone        

        if ((1000 * 60 * 60 * 24) - (sourceRecords[i]["Time"] * 1000) % (1000 * 60 * 60 * 24) + (n * 1000)) % targetCycle == 0 :
            isBegin = True

        if isBegin : 
            if count == 0 : 
                barHigh = sourceRecords[i]["High"]
                barLow = sourceRecords[i]["Low"]
                barOpen = sourceRecords[i]["Open"]
                barClose = sourceRecords[i]["Close"]
                barTime = sourceRecords[i]["Time"]
                barVol = sourceRecords[i]["Volume"]
                count += 1
            elif count < multiple : 
                barHigh = max(barHigh, sourceRecords[i]["High"])
                barLow = min(barLow, sourceRecords[i]["Low"])
                barClose = sourceRecords[i]["Close"]
                barVol += sourceRecords[i]["Volume"]
                count += 1

            if count == multiple or i == sourceLen - 1 :
                ret.append({
                    "High" : barHigh,
                    "Low" : barLow,
                    "Open" : barOpen,
                    "Close" : barClose,
                    "Time" : barTime,
                    "Volume" : barVol,
                })
                count = 0
    
    return ret 

# 测试
def main():
    while True:
        r = exchange.GetRecords()
        r2 = GetNewCycleRecords(r, 1000 * 60 * 60 * 4)      

        ext.PlotRecords(r2, "r2")                                 
        Sleep(1000)

测试

火币行情图表
Python中怎么实现一个K线合成函数

回测合成4小时图表
Python中怎么实现一个K线合成函数

看完上述内容,你们掌握Python中怎么实现一个K线合成函数的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注亿速云行业资讯频道,感谢各位的阅读!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI