温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Spark通讯录相似度计算怎么实现

发布时间:2021-12-08 14:33:47 来源:亿速云 阅读:179 作者:iii 栏目:大数据

本篇内容介绍了“Spark通讯录相似度计算怎么实现”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

需求:

Hive表中存有UserPhone跟LinkPhone 两个字段。 通过SparkSQL计算出UserPhone之间通讯录相似度>=80%的记录数据。

相似度 = A跟B的交集/A的通讯录大小。

pom文件

注意依赖之间的适配性,选择合适的版本。同时一般可能会吧Hive中conf/hive-site.xml配置文件拷贝一份到 IDEA目录

Spark通讯录相似度计算怎么实现

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.sowhat.demo</groupId>
    <artifactId>PhoneBookSimilaryCal</artifactId>
    <version>1.0-SNAPSHOT</version>


<!--    <properties>-->
<!--        <mysql.version>6.0.5</mysql.version>-->
<!--        <spring.version>4.3.6.RELEASE</spring.version>-->
<!--        <spring.data.jpa.version>1.11.0.RELEASE</spring.data.jpa.version>-->
<!--        <log4j.version>1.2.17</log4j.version>-->
<!--        <quartz.version>2.2.3</quartz.version>-->
<!--        <slf4j.version>1.7.22</slf4j.version>-->
<!--        <hibernate.version>5.2.6.Final</hibernate.version>-->
<!--        <camel.version>2.18.2</camel.version>-->
<!--        <config.version>1.10</config.version>-->
<!--        <jackson.version>2.8.6</jackson.version>-->
<!--        <servlet.version>3.0.1</servlet.version>-->
<!--        <net.sf.json.version>2.4</net.sf.json.version>-->
<!--        <activemq.version>5.14.3</activemq.version>-->
<!--        <spark.version>2.1.1</spark.version>-->
<!--        <scala.version>2.11.8</scala.version>-->
<!--        <hadoop.version>2.7.3</hadoop.version>-->
<!--    </properties>-->

    <properties>
        <scala.version>2.11.8</scala.version>
        <scala.compat.version>2.11.8</scala.compat.version>
        <spark.version>2.2.0</spark.version>
        <hadoop.version>2.7.2</hadoop.version>
        <hbase.version>1.0</hbase.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
            <!--<scope>provided</scope>-->
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>${spark.version}</version>
            <!--<scope>provided</scope>-->
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>${spark.version}</version>
            <!--<scope>provided</scope>-->
        </dependency>

    </dependencies>

    <build>
        <finalName>PhoneBookSimilaryCal</finalName>
        <plugins>

            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <!-- 这个组件让我们不用再 在项目上add frame 选择scala了,可以自动创建 *.scala 文件 -->
                <version>3.2.2</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>


            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <configuration>
                    <archive>
                        <manifest>
                            <mainClass>com.sowhat.PhoneBookSimilaryCal</mainClass>
                        </manifest>
                    </archive>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>

                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <!--名字任意 -->
                        <phase>package</phase>
                        <!-- 绑定到package生命周期阶段上 -->
                        <goals>
                            <goal>single</goal>
                            <!-- 只运行一次 -->
                        </goals>
                    </execution>
                </executions>

            </plugin>
        </plugins>
    </build>


</project>

spark代码:

package com.sowhat

/**
  * @author sowhat
  * @create 2020-07-02 16:30
  */

import java.security.MessageDigest
import java.text.SimpleDateFormat
import java.util.Calendar

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
import org.apache.spark.storage.StorageLevel
import org.slf4j.{Logger, LoggerFactory}


object PhoneBookSimilaryCal {
  def MD5(input: String): String = {
    var md5: MessageDigest = null
    try {
      md5 = MessageDigest.getInstance("MD5")
    } catch {
      case e: Exception => {
        e.printStackTrace
        println(e.getMessage)
      }
    }
    val byteArray: Array[Byte] = input.getBytes
    val md5Bytes: Array[Byte] = md5.digest(byteArray)
    var hexValue: String = ""
    for (i <- 0 to md5Bytes.length - 1) {
      val str: Int = (md5Bytes(i).toInt) & 0xff
      if (str < 16) {
        hexValue = hexValue + "0"
      }
      hexValue = hexValue + Integer.toHexString(str)
    }
    return hexValue.toString
  }

  def Yesterday = {
    val dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
    val cal: Calendar = Calendar.getInstance()
    cal.add(Calendar.DATE, -1)
    dateFormat.format(cal.getTime)
  }

  def OneYearBefore = {
    val dateFormat: SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd")
    var cal: Calendar = Calendar.getInstance()
    cal.add(Calendar.YEAR, -1)
    dateFormat.format(cal.getTime())
  }

  def SixMonthBefore = {
    val dateFormat: SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd")
    var cal: Calendar = Calendar.getInstance()
    cal.add(Calendar.MONTH, -6)
    dateFormat.format(cal.getTime)
  }

  def ThreeMonthBefore = {
    val dateFormat: SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd")
    var cal: Calendar = Calendar.getInstance()
    cal.add(Calendar.MONTH, -3)
    dateFormat.format(cal.getTime)

  }

  def OneMonthBefore = {
    val dateFormat: SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd")
    var cal: Calendar = Calendar.getInstance()
    cal.add(Calendar.MONTH, -1)
    dateFormat.format(cal.getTime)
  }

  private val logger: Logger = LoggerFactory.getLogger(PhoneBookSimilaryCal.getClass)

  def main(args: Array[String]): Unit = {
    System.setProperty("HADOOP_USER_NAME", "yjy_research") // sparkSQL用到Hadoop的东西,所以权限用户要注意哦
    val spark: SparkSession = SparkSession.builder().appName("phoneBookSimilaryCal")
      .config("spark.sql.shuffle.partitions", "1000")
      .config("spark.default.parallelism", "3000")
      .config("spark.driver.maxResultSize", "40g")
      //.conf("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
      .config("spark.shuffle.io.maxRetries", "20")
      .config("spark.shuffle.io.retryWait", "10s")
      .config("spark.storage.memoryFraction", "0.5")
      .config("spark.shuffle.memoryFraction", "0.5")
      .config("executor-cores", "5")
      .config("spark.executor.instances", "10")
      .config("spark.executor.cores.config", "3000")
      .config("spark.executor.instances", "20")
      .config("spark.executor.memory", "40g")
      .config("spark.driver.memory", "40g")
      .config("spark.sql.warehouse.dir", "/user/hive/warehouse")
      .enableHiveSupport().getOrCreate() // 开启Hive table

    spark.sql("use dm_kg")
    val sqlText: String = "select user_phone,phone from user_phone_with_phone_message where user_phone not in( '59400a197e9bf5fbb2fbee0456b66cd6','f7e82e195810a01688db2eeecb8e56c9') and  etl_date>'" + SixMonthBefore + "'"
    println(sqlText)
    val df: DataFrame = spark.sql(sqlText)
    val rdd: RDD[Row] = df.rdd


    def getUserPhoneAndPhone(iter: Iterator[Row]) = {
      var res: List[(String, String)] = List[(String, String)]()
      while (iter.hasNext) {
        val row: Row = iter.next()
        res = res.::(row.getString(0), row.getString(1))
      }
      res.iterator
    }

    val userPhone_Phone: RDD[(String, String)] = rdd.mapPartitions(getUserPhoneAndPhone)
    userPhone_Phone.persist(StorageLevel.MEMORY_AND_DISK_SER)

    val userPhone_num: RDD[(String, Long)] = userPhone_Phone.map(x => (x._1, 1L)).reduceByKey(_ + _, 3000)

    def dealUserPhoneNum(iter: Iterator[(String, Long)]) = {
      var res: List[(String, String)] = List[(String, String)]()
      while (iter.hasNext) {
        val row: (String, Long) = iter.next()
        res.::=(row._1, row._1.concat("_").concat(row._2.toString))
      }
      res.iterator
    }

    val userPhone_userPhoneNum: RDD[(String, String)] = userPhone_num.mapPartitions(dealUserPhoneNum)
    val userPhone_Phone_userPhoneNum: RDD[(String, (String, String))] = userPhone_Phone.join(userPhone_userPhoneNum, 3000)
    val userPhone_Phone_userPhoneNum_filter: RDD[(String, (String, String))] = userPhone_Phone_userPhoneNum.filter(x => x._2._2.split("_")(1).toLong != 1)

    def getSecondTuple(iter: Iterator[(String, (String, String))]) = {
      var res = List[(String, String)]()
      while (iter.hasNext) {
        val tuple: (String, (String, String)) = iter.next()
        res.::=(tuple._2)
      }
      res.iterator
    }

    val phone_userPhoneNum: RDD[(String, String)] = userPhone_Phone_userPhoneNum_filter.mapPartitions(getSecondTuple)
    val phone_userPhoneListWithSize: RDD[(String, (List[String], Int))] = phone_userPhoneNum.combineByKey(
      (x: String) => (List(x), 1),
      (old: (List[String], Int), x: String) => (x :: old._1, old._2 + 1),
      (par1: (List[String], Int), par2: (List[String], Int)) => (par1._1 ::: par2._1, par1._2 + par2._2)
    ) // 结果  (联系电话,(对应用户电话List,List大小))
    val userPhoneList: RDD[List[String]] = phone_userPhoneListWithSize.filter(x => (x._2._2 < 1500 && x._2._2 > 1)).map(_._2._1)
    // 通讯录大小 (1,1500) 筛查出来
    val userPhone_userPhone: RDD[List[String]] = userPhoneList.flatMap(_.sorted.combinations(2))
    // https://blog.csdn.net/aomao4913/article/details/101274895
    val userPhone_userPhone_Num: RDD[((String, String), Int)] = userPhone_userPhone.map(x => ((x(0), x(1)), 1)).reduceByKey(_ + _, 3000)
    // 获得 (UserPhone1,UserPhone2),LinkNum

    def dealData(iter: Iterator[((String, String), Int)]) = {
      var res = List[(String, String, Int)]()
      while (iter.hasNext) {
        val row: ((String, String), Int) = iter.next()
        val line = row._1.toString.split(",") // (userPhone_num,userPhone_num)
        res.::=(line(0).replace("(", ""), line(1).replace(")", ""), row._2)
      }
      res.iterator
    }

    val userPhone_num_with_userPhone_num_with_commonNum: RDD[(String, String, Int)] = userPhone_userPhone_Num.mapPartitions(dealData)

    def FirstToSecond(iter: Iterator[(String, String, Int)]) = {
      var res = List[(String, String, Long, Int)]()
      while (iter.hasNext) {
        val cur: (String, String, Int) = iter.next
        val itemList1: Array[String] = cur._1.toString.split("_")
        val itemList2: Array[String] = cur._2.toString.split("_")
        res.::=(itemList1(0), itemList2(0), itemList1(1).toLong, cur._3)
      }
      res.iterator
    } // userPhone1,userPhone2,userPhone1BookNum,CommonNum

    def SecondToFirst(iter: Iterator[(String, String, Int)]) = {
      var res = List[(String, String, Long, Int)]()
      while (iter.hasNext) {
        val cur: (String, String, Int) = iter.next
        val itemList1: Array[String] = cur._1.toString.split("_")
        val itemList2: Array[String] = cur._2.toString.split("_")
        res.::=(itemList2(0), itemList1(0), itemList2(1).toLong, cur._3)
      }
      res.iterator
    } // userPhone2,userPhone1,userPhone2BookNum,CommonNum
    val userPhone1_userPhone2_userPhone1BookNum_CommonNum_1: RDD[(String, String, Long, Int)] = userPhone_num_with_userPhone_num_with_commonNum.mapPartitions(FirstToSecond).filter(_._3 > 1)
    val userPhone2_userPhone1_userPhone2BookNum_CommonNum_2: RDD[(String, String, Long, Int)] = userPhone_num_with_userPhone_num_with_commonNum.mapPartitions(SecondToFirst).filter(_._3 > 1)
    val userPhone1_userPhone2_userPhone1BookNum_CommonNum: RDD[(String, String, Long, Int)] = userPhone2_userPhone1_userPhone2BookNum_CommonNum_2.union(userPhone1_userPhone2_userPhone1BookNum_CommonNum_1)

    def finalDeal(iter: Iterator[(String, String, Long, Int)]) = {
      var res = List[(String, Long, String, String, Long, String)]()
      while (iter.hasNext) {
        val cur: (String, String, Long, Int) = iter.next()
        res.::=(cur._1.toString, cur._4 * 100 / cur._3, cur._2.toString, "Similar_phoneBook", cur._3, Yesterday)
      }
      res.iterator
    } // user_phone1,percent,user_phone2,label,userPhone1BookNum,CalDate
    val userPhone1_percent_userPhone2_Label_UserPhone1BookNum_CalDate: RDD[(String, Long, String, String, Long, String)] = userPhone1_userPhone2_userPhone1BookNum_CommonNum.mapPartitions(finalDeal)
    val userPhone1_percent_userPhone2_Label_UserPhone1BookNum_CalDate_Filter: RDD[(String, Long, String, String, Long, String)] = userPhone1_percent_userPhone2_Label_UserPhone1BookNum_CalDate.filter(_._2 >= 80)
    import spark.implicits._
    val finalResult: DataFrame = userPhone1_percent_userPhone2_Label_UserPhone1BookNum_CalDate_Filter.toDF()
    printf("·:" + userPhone1_percent_userPhone2_Label_UserPhone1BookNum_CalDate_Filter.collect().length)
    spark.sql("drop table if exists sowhat_similar_phonebook_result")
    spark.sql("CREATE TABLE IF NOT EXISTS sowhat_similar_phonebook_result" +
      "(startId string comment '起始节点ID'," +
      "similar_percent string comment '相似度'," +
      "endId string comment '终止节点ID'," +
      "type string  comment '边的类型'," +
      "telbook_num long comment '通讯录个数'," +
      "etl_date Date  comment 'etl日期') " +
      "row format delimited fields terminated by ',' ")
    logger.info("created table similar_phonebook_result")

    finalResult.createOrReplaceTempView("resultMessage")
    spark.sql("insert into sowhat_similar_phonebook_result select * from resultMessage")
    spark.sql("select count(1) from  sowhat_similar_phonebook_result").show()
    spark.stop()

  }
}

spark集群启动脚本命令: 

time sshpass -p passpwrd ssh user@ip " nohup  
spark-submit --name "sowhatJob" --master yarn --deploy-mode client \
--conf spark.cleaner.periodicGC.interval=120 --conf spark.executor.memory=20g \
--conf spark.num.executors=20 --conf spark.driver.memory=20g --conf spark.sql.shuffle.partitions=1500 \
--conf spark.network.timeout=100000000 --queue root.kg \ (Hadoop集群中YARN队列)
--class com.sowhat.PhoneBookSimilaryCal PhoneBookSimilaryCal1.jar  "

“Spark通讯录相似度计算怎么实现”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI