这篇文章主要介绍“Storm开发细节是什么”,在日常操作中,相信很多人在Storm开发细节是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Storm开发细节是什么”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
package test;
import java.io.IOException;
import java.util.Map;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import storm.copyFromClass.TestWordSpout;
import com.esotericsoftware.minlog.Log;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.tuple.Tuple;
// 测试目的,在这里我们需要测试一下当前Spout 不断产生数据的过程
public class testWordSpoutTopology {
public static class TestSimpleBolt extends BaseBasicBolt {
@Override
public void execute(Tuple input, BasicOutputCollector collector) {
System.out.println(input.toString());
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
System.out.println("Method declare");
}
}
public static void main(String[] args) throws IOException {
// 首先,我们必须建立一个新的TopologyBuilder
TopologyBuilder builder = new TopologyBuilder();
//其次,我们需要配置如下的组件: 1 Spout,2Bolt
builder.setSpout("word-emit-byThread", new TestWordSpout());
//在这个Spout之中,我们约定将 【word-emit-byThread】Spout组件 发射的元祖进行
shuffleGrouping
builder.setBolt("word-show", new TestSimpleBolt()).shuffleGrouping(
"word-emit-byThread");
Config config = new Config();
config.setDebug(false);
//最后进行本地提交
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("simple", config, builder.createTopology());
}
}
以上,
testWordSpoutTopology
是我们运行的主类
package storm.copyFromClass;
import backtype.storm.Config;
import backtype.storm.topology.OutputFieldsDeclarer;
import java.util.Map;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import backtype.storm.utils.Utils;
import java.util.HashMap;
import java.util.Random;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
//
public class TestWordSpout extends BaseRichSpout {
public static Logger LOG = LoggerFactory.getLogger(TestWordSpout.class);
boolean _isDistributed;
SpoutOutputCollector _collector;
public TestWordSpout() {
this(true);
}
public TestWordSpout(boolean isDistributed) {
_isDistributed = isDistributed;
}
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
_collector = collector;
}
public void close() {
}
// 发送
public void nextTuple() {
Utils.sleep(100);
final String[] words = new String[] { "张兵", "吴哥", "仝志维", "前辈", "禅师"};
final Random rand = new Random();
final String word = words[rand.nextInt(words.length)];
_collector.emit(new Values(word));
}
//在这里,我们没有进行ACK
public void ack(Object msgId) {
}
//在这里,我们没有进行fail
public void fail(Object msgId) {
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}
@Override
public Map<String, Object> getComponentConfiguration() {
if(!_isDistributed) {
Map<String, Object> ret = new HashMap<String, Object>();
ret.put(Config.TOPOLOGY_MAX_TASK_PARALLELISM, 1);
return ret;
} else {
return null;
}
}
}
结果:
请注意在这里,我们的Stream 默认的id为空
到此,关于“Storm开发细节是什么”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
原文链接:https://my.oschina.net/infiniteSpace/blog/284022