这篇文章主要介绍“Hive和Hbase的区别”,在日常操作中,相信很多人在Hive和Hbase的区别问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Hive和Hbase的区别”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
Hive是为了简化编写MapReduce程序而生的,使用MapReduce做过数据分析的人都知道,很多分析程序除业务逻辑不同外,程序流程基本一样。在这种情况下,就需要Hive这样的用戶编程接口。Hive本身不存储和计算数据,它完全依赖于HDFS和MapReduce,Hive中的表纯逻辑,就是些表的定义等,也就是表的元数据。使用SQL实现Hive是因为SQL大家都熟悉,转换成本低,类似作用的Pig就不是SQL。
HBase为查询而生的,它通过组织起节点內所有机器的內存,提供一個超大的內存Hash表,它需要组织自己的数据结构,包括磁盘和內存中的,而Hive是不做这个的,表在HBase中是物理表,而不是逻辑表,搜索引擎使用它來存储索引,以满足查询的实时性需求。
hive类似CloudBase,也是基于hadoop分布式计算平台上的提供data warehouse的sql功能的一套软件。使得存储在hadoop里面的海量数据的汇总,即席查询简单化。hive提供了一套QL的查询语言,以sql为基础,使用起来很方便。
HBase是一个分布式的基于列存储的非关系型数据库。HBase的查询效率很高,主要由于查询和展示结果。hive是分布式的关系型数据库。主要用来并行分布式 处理 大量数据。hive中的所有查询除了"select * from table;"都是需要通过Map\Reduce的方式来执行的。由于要走Map\Reduce,即使一个只有1行1列的表,如果不是通过select * from table;方式来查询的,可能也需要8、9秒。但hive比较擅长处理大量数据。当要处理的数据很多,并且Hadoop集群有足够的规模,这时就能体现出它的优势。
通过hive的存储接口,hive和Hbase可以整合使用。
1、hive是sql语言,通过数据库的方式来操作hdfs文件系统,为了简化编程,底层计算方式为mapreduce。
2、hive是面向行存储的数据库。
3、Hive本身不存储和计算数据,它完全依赖于HDFS和MapReduce,Hive中的表纯逻辑。
4、HBase为查询而生的,它通过组织起节点內所有机器的內存,提供一個超大的內存Hash表
5、hbase不是关系型数据库,而是一个在hdfs上开发的面向列的分布式数据库,不支持sql。
6、hbase是物理表,不是逻辑表,提供一个超大的内存hash表,搜索引擎通过它来存储索引,方便查询操作。
7、hbase是列存储。
Hive只供维护用,真正查起来非常非常慢的!
这是因为它的底层是要通过mapreduce分布式计算的,hbase、hive、pig底层都是这样的。但整体来说hadoop还是比较快的,因为它是进行海量数据存储和分布式计算,这个速度已经很不错了。
Hive和Hbase有各自不同的特征:hive是高延迟、结构化和面向分析的,hbase是低延迟、非结构化和面向编程的。Hive数据仓库在hadoop上是高延迟的。
其中HBase位于结构化存储层,Hadoop HDFS为HBase提供了高可靠性的底层存储支持,Hadoop MapReduce为HBase提供了高性能的计算能力,Zookeeper为HBase提供了稳定服务和failover机制。
此外,Pig和Hive还为HBase提供了高层语言支持,使得在HBase上进行数据统计处理变的非常简单。 Sqoop则为HBase提供了方便的RDBMS数据导入功能,使得传统数据库数据向HBase中迁移变的非常方便。
到此,关于“Hive和Hbase的区别”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。