这期内容当中小编将会给大家带来有关Flink中怎么自定义Redis的Sink函数,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
1.添加redis对应pom依赖
<dependency> <groupId>org.apache.bahir</groupId> <artifactId>flink-connector-redis_2.11</artifactId> <version>1.0</version></dependency>
2.主函数代码:
package com.hadoop.ljs.flink110.redis;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.redis.RedisSink;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommand;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescription;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper;
import scala.Tuple2;
/**
* @author: Created By lujisen
* @company ChinaUnicom Software JiNan
* @date: 2020-05-02 10:30
* @version: v1.0
* @description: com.hadoop.ljs.flink110.redis
*/
public class RedisSinkMain {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment senv =StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<String> source = senv.socketTextStream("localhost", 9000);
DataStream<String> filter = source.filter(new FilterFunction<String>() {
@Override
public boolean filter(String value) throws Exception {
if (null == value || value.split(",").length != 2) {
return false;
}
return true;
}
});
DataStream<Tuple2<String, String>> keyValue = filter.map(new MapFunction<String, Tuple2<String, String>>() {
@Override
public Tuple2<String, String> map(String value) throws Exception {
String[] split = value.split(",");
return new Tuple2<>(split[0], split[1]);
}
});
//创建redis的配置 单机redis用FlinkJedisPoolConfig,集群redis需要用FlinkJedisClusterConfig
FlinkJedisPoolConfig redisConf = new FlinkJedisPoolConfig.Builder().setHost("worker2.hadoop.ljs").setPort(6379).setPassword("123456a?").build();
keyValue.addSink(new RedisSink<Tuple2<String, String>>(redisConf, new RedisMapper<Tuple2<String, String>>() {
@Override
public RedisCommandDescription getCommandDescription() {
return new RedisCommandDescription(RedisCommand.HSET,"table1");
}
@Override
public String getKeyFromData(Tuple2<String, String> data) {
return data._1;
}
@Override
public String getValueFromData(Tuple2<String, String> data) {
return data._2;
}
}));
/*启动执行*/
senv.execute();
}
}
3.函数测试
1).window端scoket发送数据
2.redis结果验证
上述就是小编为大家分享的Flink中怎么自定义Redis的Sink函数了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。