这篇文章主要介绍了matlab怎么实现基于广义神经网络GRNN网络入侵聚类的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇matlab怎么实现基于广义神经网络GRNN网络入侵聚类文章都会有所收获,下面我们一起来看看吧。
%% 清空环境文件
clear
clc
%% 提取攻击数据
%攻击样本数据
load netattack;
P1=netattack;
T1=P1(:,39)';
P1(:,39)=[];
%数据大小
[R1,C1]=size(P1);
csum=20; %提取训练数据多少
%% 模糊聚类
data=P1;
[center,U,obj_fcn] = fcm(data,5);
for i=1:R1
[value,idx]=max(U(:,i));
a1(i)=idx;
end
%% 模糊聚类结果分析
Confusion_Matrix_FCM=zeros(6,6);
Confusion_Matrix_FCM(1,:)=0:5;
Confusion_Matrix_FCM(:,1)=[0:5]';
for nf=1:5
for nc=1:5
Confusion_Matrix_FCM(nf+1,nc+1)=length(find(a1(T1==nf)==nc));
end
end
%% 网络训练样本提取
cent1=P1(a1==1,:);cent1=mean(cent1);
cent2=P1(a1==2,:);cent2=mean(cent2);
cent3=P1(a1==3,:);cent3=mean(cent3);
cent4=P1(a1==4,:);cent4=mean(cent4);
cent5=P1(a1==5,:);cent5=mean(cent5);
%提取范数最小为训练样本
for n=1:R1
ecent1(n)=norm(P1(n,:)-cent1);
ecent2(n)=norm(P1(n,:)-cent2);
ecent3(n)=norm(P1(n,:)-cent3);
ecent4(n)=norm(P1(n,:)-cent4);
ecent5(n)=norm(P1(n,:)-cent5);
end
for n=1:csum
[~, me1]=min(ecent1);
[~, me2]=min(ecent2);
[~, me3]=min(ecent3);
[~, me4]=min(ecent4);
[va, me5]=min(ecent5);
ecnt1(n,:)=P1(me1(1),:);ecent1(me1(1))=[];tcl(n)=1;
ecnt2(n,:)=P1(me2(1),:);ecent2(me2(1))=[];tc2(n)=2;
ecnt3(n,:)=P1(me3(1),:);ecent3(me3(1))=[];tc3(n)=3;
ecnt4(n,:)=P1(me4(1),:);ecent4(me4(1))=[];tc4(n)=4;
ecnt5(n,:)=P1(me5(1),:);ecent5(me5(1))=[];tc5(n)=5;
end
P2=[ecnt1;ecnt2;ecnt3;ecnt4;ecnt5];T2=[tcl,tc2,tc3,tc4,tc5];
k=0;
%% 迭代计算
for nit=1:10%开始迭代
%% 广义神经网络聚类
net = newgrnn(P2',T2,50);
%训练广义网络
a2=sim(net,P1') ;
%预测结果
%输出标准化(根据输出来分类)
a2(a2<=1.5)=1;
a2(a2>1.5&a2<=2.5)=2;
a2(a2>2.5&a2<=3.5)=3;
a2(a2>3.5&a2<=4.5)=4;
a2(a2>4.5)=5;
%% 网络训练数据再次提取
cent1=P1(a2==1,:);cent1=mean(cent1);
cent2=P1(a2==2,:);cent2=mean(cent2);
cent3=P1(a2==3,:);cent3=mean(cent3);
cent4=P1(a2==4,:);cent4=mean(cent4);
cent5=P1(a2==5,:);cent5=mean(cent5);
for n=1:R1%计算样本到各个中心的距离
ecent1(n)=norm(P1(n,:)-cent1);
ecent2(n)=norm(P1(n,:)-cent2);
ecent3(n)=norm(P1(n,:)-cent3);
ecent4(n)=norm(P1(n,:)-cent4);
ecent5(n)=norm(P1(n,:)-cent5);
end
%选择离每类中心最近的csum个样本
for n=1:csum
[~, me1]=min(ecent1);
[~, me2]=min(ecent2);
[~, me3]=min(ecent3);
[~, me4]=min(ecent4);
[va, me5]=min(ecent5);
ecnt1(n,:)=P1(me1(1),:);ecent1(me1(1))=[];tc1(n)=1;
ecnt2(n,:)=P1(me2(1),:);ecent2(me2(1))=[];tc2(n)=2;
ecnt3(n,:)=P1(me3(1),:);ecent3(me3(1))=[];tc3(n)=3;
ecnt4(n,:)=P1(me4(1),:);ecent4(me4(1))=[];tc4(n)=4;
ecnt5(n,:)=P1(me5(1),:);ecent5(me5(1))=[];tc5(n)=5;
end
p2=[ecnt1;ecnt2;ecnt3;ecnt4;ecnt5];
T2=[tc1,tc2,tc3,tc4,tc5];
%统计分类结果
Confusion_Matrix_GRNN=zeros(6,6);
Confusion_Matrix_GRNN(1,:)=0:5;
Confusion_Matrix_GRNN(:,1)=[0:5]';
for nf=1:5
for nc=1:5
Confusion_Matrix_GRNN(nf+1,nc+1)=length(find(a2(T1==nf)==nc));
end
end
pre2=0;
for n=2:6
pre2=pre2+max(Confusion_Matrix_GRNN(n,:));
end
pre2=pre2/R1*100;
end
关于“matlab怎么实现基于广义神经网络GRNN网络入侵聚类”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“matlab怎么实现基于广义神经网络GRNN网络入侵聚类”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。