温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

python聚类实例分析

发布时间:2021-12-17 17:14:17 来源:亿速云 阅读:313 作者:iii 栏目:大数据

这篇文章主要介绍“python聚类实例分析”,在日常操作中,相信很多人在python聚类实例分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”python聚类实例分析”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

  • 聚类分析

将数据存储为csv格式,导入python,查看前10行数据。

import pandas as pd

reviewsdata = pd.read_csv('reviewsdata.csv',index_col=0)#index_col=0第一列所为行索引

reviewsdata.head(10)

python聚类实例分析

从表格中,可以看到不同性别、不同年龄使用不同单词的频数。对数据进行聚类分析,并画出聚类树形图。

import scipy

import scipy.cluster.hierarchy as sch

import matplotlib.pylab as plt

import pylab

#生成点与点之间的距离矩阵,这里用的欧氏距离:

disMat = sch.distance.pdist(reviewsdata.T,'euclidean') 

#进行层次聚类:

Z=sch.linkage(disMat,method='average') 

#将层级聚类结果以树状图表示出来并保存为plot_dendrogram.png

sch.dendrogram(Z,labels=reviewsdata.columns,leaf_font_size=7.5)

plt.rcParams['font.sans-serif'] = ['SimHei'] 

plt.title("口碑的聚类")

pylab.show()

python聚类实例分析

在聚类分析的过程中,是将不同性别年龄的人群使用词的频数生成向量,然后比较这些向量的距离,将距离较近的总结在一起。距离近意味着措辞相仿,聚类也就是不断合并两个最相近向量的过程。从图显示,40多岁男性和50多岁男性在使用单词方面很接近,但跟60多岁女性明显不同。整体上,能看出不同年龄段和不同性别之间存在意见差异。

  • 几个小概念

聚类分析:一种根据数据相似度将数据分组对手法,分组前,不能确定每一类的特征。数据相似度通过距离来判断,求距离的方法有很多种,最简单的为欧式距离。本文使用的是层次聚类,文章聚类(一):DBSCAN算法实现(r语言)中介绍了DBSCAN聚类方法。

到此,关于“python聚类实例分析”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI