这篇文章主要讲解了“python怎么进行数据加载”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“python怎么进行数据加载”吧!
首先,你要先学会安装软件,anaconda软件,安装成功后,你点击jupyter notebook打开代码框。
现在可以开始尝试做数据分析了。
数据集下载 https://www.kaggle.com/c/titanic/overview
导入numpy和pandas
import pandas as pd import numpy as np
如果出错了,需要注意大小写、有没有单词写错了
(1) 使用相对路径载入数据
(2) 使用绝对路径载入数据
df = pd.read_csv('train.csv') df.head(3)
df = pd.read_csv('/Users/Documents/train.csv') df.head(3)
注意绝对路径的 “ / ” 方向不要错。
每1000行为一个数据模块,逐块读取
chunker = pd.read_csv('train.csv', chunksize=1000)
对着整个表修改列名:将表头改成中文,索引改为乘客ID ,要注意的是,要记得把名字跟列一一对上,数量对上、顺序对上
PassengerId => 乘客ID
Survived => 是否幸存
Pclass => 乘客等级(1/2/3等舱位)
Name => 乘客姓名
Sex => 性别
Age => 年龄
SibSp => 堂兄弟/妹个数
Parch => 父母与小孩个数
Ticket => 船票信息
Fare => 票价
Cabin => 客舱
Embarked => 登船港口
df = pd.read_csv('train.csv', names=['乘客ID','是否幸存','仓位等级','姓名','性别','年龄','兄弟姐妹个数','父母子女个数','船票信息','票价','客舱','登船港口'],index_col='乘客ID',header=0) df.head()
导入数据后,我们可以对数据的整体结构和样例进行概览,比如说,数据大小、有多少列,各列都是什么格式的,是否包含null等。info 后面加()跟不加()会 有不同的内容。
print(df.info())
如想在python的查看数据,可以用head
df.head(10) df.tail(15)
判断数据是否为空,为空的地方返回True,其余地方返回False
df.isnull().head()
在工作目录下保存为一个新文件train_chinese.csv,如不希望表格自带index,可以加入index=false
df.to_csv('train_chinese.csv',index=flase)
感谢各位的阅读,以上就是“python怎么进行数据加载”的内容了,经过本文的学习后,相信大家对python怎么进行数据加载这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。