这篇“R语言怎么在metadata中添加基因表达数据”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“R语言怎么在metadata中添加基因表达数据”文章吧。
merge_metadata_genexpdata.r 在metadata中添加基因表达数据
metadata添加基因表达结果。 基因表达文件行为不同基因,列为不同样本, 只要是列为不同样本的文件都可以用这个脚本合并到metadata中;
$Rscript $scriptdir/merge_metadata_genexpdata.r -h usage: /share/nas1/huangls/test/TCGA_immu/scripts/merge_metadata_genexpdata.r [-h] -m metadata -g expset -b by [--log2] [-o outdir] [-p prefix] merge metadata and gene expression: optional arguments: -h, --help show this help message and exit -m metadata, --metadata metadata input metadata file path with suvival time [required] -g expset, --expset expset input gene expression set file [required] -b by, --by by input sample ID column name in metadata [required] --log2 whether do log2 transfrom for expression data [optional, default: False] -o outdir, --outdir outdir output file directory [default cwd] -p prefix, --prefix prefix out file name prefix [default cox]
-m 指定metadata文件:
barcode | patient | sample | shortLetterCode | definition | sample_submitter_id | sample_type_id | sample_id | sample_type |
TCGA-B7-A5TK-01A-12R-A36D-31 | TCGA-B7-A5TK | TCGA-B7-A5TK-01A | TP | Primary solid Tumor | TCGA-B7-A5TK-01A | 1 | 58937d2c-b4c3-4992-a95c-d0d1fa73f1a9 | Primary Tumor |
TCGA-BR-7959-01A-11R-2343-13 | TCGA-BR-7959 | TCGA-BR-7959-01A | TP | Primary solid Tumor | TCGA-BR-7959-01A | 1 | c8fc5fb2-ded2-48af-a87d-36c367a3330d | Primary Tumor |
TCGA-IN-8462-01A-11R-2343-13 | TCGA-IN-8462 | TCGA-IN-8462-01A | TP | Primary solid Tumor | TCGA-IN-8462-01A | 1 | 26509d1e-253b-463c-8654-589929889fbe | Primary Tumor |
TCGA-BR-A4CR-01A-11R-A24K-31 | TCGA-BR-A4CR | TCGA-BR-A4CR-01A | TP | Primary solid Tumor | TCGA-BR-A4CR-01A | 1 | 76165733-85ca-47d0-a82a-f64fa9b1b834 | Primary Tumor |
TCGA-CG-4443-01A-01R-1157-13 | TCGA-CG-4443 | TCGA-CG-4443-01A | TP | Primary solid Tumor | TCGA-CG-4443-01A | 1 | f4fb736a-42c9-4367-a327-d0d1c4cba359 | Primary Tumor |
TCGA-KB-A93J-01A-11R-A39E-31 | TCGA-KB-A93J | TCGA-KB-A93J-01A | TP | Primary solid Tumor | TCGA-KB-A93J-01A | 1 | 888711a8-8ffd-49bb-aa85-7455c07f1ad5 | Primary Tumor |
TCGA-BR-4371-01A-01R-1157-13 | TCGA-BR-4371 | TCGA-BR-4371-01A | TP | Primary solid Tumor | TCGA-BR-4371-01A | 1 | 95d6e839-a21b-4266-b7f8-e47fab262af3 | Primary Tumor |
TCGA-IN-A6RO-01A-12R-A33Y-31 | TCGA-IN-A6RO | TCGA-IN-A6RO-01A | TP | Primary solid Tumor | TCGA-IN-A6RO-01A | 1 | c6e17043-a145-4cc3-b889-4f499b17dbf3 | Primary Tumor |
TCGA-HU-A4H3-01A-21R-A251-31 | TCGA-HU-A4H3 | TCGA-HU-A4H3-01A | TP | Primary solid Tumor | TCGA-HU-A4H3-01A | 1 | cd33e854-1bdf-42e0-83e7-256c723c5b55 | Primary Tumor |
TCGA-RD-A8MV-01A-11R-A36D-31 | TCGA-RD-A8MV | TCGA-RD-A8MV-01A | TP | Primary solid Tumor | TCGA-RD-A8MV-01A | 1 | f7a464d1-9939-4ab8-a03b-f2962e618817 | Primary Tumor |
TCGA-VQ-A91X-01A-12R-A414-31 | TCGA-VQ-A91X | TCGA-VQ-A91X-01A | TP | Primary solid Tumor | TCGA-VQ-A91X-01A | 1 | 288b0130-6744-495e-bd99-da6f6b5f6953 | Primary Tumor |
TCGA-D7-8575-01A-11R-2343-13 | TCGA-D7-8575 | TCGA-D7-8575-01A | TP | Primary solid Tumor | TCGA-D7-8575-01A | 1 | 71efd38a-03a9-488d-bde2-18b17559c775 | Primary Tumor |
TCGA-BR-4257-01A-01R-1131-13 | TCGA-BR-4257 | TCGA-BR-4257-01A | TP | Primary solid Tumor | TCGA-BR-4257-01A | 1 | 97b44b05-97eb-486c-94db-42838831de0b | Primary Tumor |
TCGA-BR-8485-01A-11R-2402-13 | TCGA-BR-8485 | TCGA-BR-8485-01A | TP | Primary solid Tumor | TCGA-BR-8485-01A | 1 | 2f1460ea-827b-4c51-86a5-2d85771888bb | Primary Tumor |
TCGA-BR-4370-01A-01R-1157-13 | TCGA-BR-4370 | TCGA-BR-4370-01A | TP | Primary solid Tumor | TCGA-BR-4370-01A | 1 | cfb7901b-e4e1-42fe-802d-dcd34f8c4912 | Primary Tumor |
TCGA-D7-A748-01A-12R-A32D-31 | TCGA-D7-A748 | TCGA-D7-A748-01A | TP | Primary solid Tumor | TCGA-D7-A748-01A | 1 | 308bca2d-6e27-4da9-9a07-b0eb88437953 | Primary Tumor |
TCGA-VQ-A91Z-01A-11R-A414-31 | TCGA-VQ-A91Z | TCGA-VQ-A91Z-01A | TP | Primary solid Tumor | TCGA-VQ-A91Z-01A | 1 | ec6ed61a-1d7e-4057-9ac2-dd1ed2accfb0 | Primary Tumor |
TCGA-RD-A7C1-01A-11R-A32D-31 | TCGA-RD-A7C1 | TCGA-RD-A7C1-01A | TP | Primary solid Tumor | TCGA-RD-A7C1-01A | 1 | b905ac72-aae1-4e6e-b560-46b9f4f9ef5f | Primary Tumor |
-g 指定要合并的 文件:
cell_type | TCGA-B7-A5TK-01A-12R-A36D-31 | TCGA-BR-7959-01A-11R-2343-13 | TCGA-IN-8462-01A-11R-2343-13 | TCGA-BR-A4CR-01A-11R-A24K-31 | TCGA-CG-4443-01A-01R-1157-13 | TCGA-KB-A93J-01A-11R-A39E-31 | TCGA-BR-4371-01A-01R-1157-13 | TCGA-IN-A6RO-01A-12R-A33Y-31 | TCGA-HU-A4H3-01A-21R-A251-31 | TCGA-RD-A8MV-01A-11R-A36D-31 |
B cells naive | 0.041806 | 0.119034 | 0.275451 | 0.243789 | 0.118753 | 0.097526 | 0.087438 | 0.110736 | 0.091899 | 0.114157 |
B cells memory | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Plasma cells | 0.005778 | 0.009967 | 0.04908 | 0 | 0 | 0.009401 | 0.006596 | 0.012819 | 0.004326 | 0.001989 |
T cells CD8 | 0.399813 | 0.081383 | 0.052203 | 0.032568 | 0 | 0.017233 | 0.042146 | 0.074234 | 0.192331 | 0.10848 |
T cells CD4 naive | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
T cells CD4 memory resting | 0 | 0.163605 | 0.158559 | 0.205805 | 0.161354 | 0.197031 | 0.445467 | 0.207407 | 0.095721 | 0.173691 |
T cells CD4 memory activated | 0.222587 | 0.056429 | 0.022786 | 0.026488 | 0.008663 | 0.049117 | 0.016507 | 0.062309 | 0.132577 | 0.077914 |
T cells follicular helper | 0.006564 | 0 | 0 | 0.007444 | 0 | 0.01711 | 0.009081 | 0.060454 | 0.040637 | 0.056979 |
T cells regulatory (Tregs) | 0 | 0.034066 | 0.08263 | 0.040602 | 0.001932 | 0.038297 | 0 | 0.052859 | 0.052045 | 0.045091 |
T cells gamma delta | 0 | 0 | 0 | 0 | 0 | 0.008108 | 0 | 0.00487 | 0 | 0 |
NK cells resting | 0 | 0.034875 | 0 | 0.02808 | 0.031821 | 0 | 0.018045 | 0.006281 | 0.023437 | 0.029263 |
NK cells activated | 0.00696 | 0 | 0.029651 | 0 | 0 | 0.047286 | 0 | 0.004472 | 0.007489 | 0 |
Monocytes | 0.005411 | 0.013788 | 0.007133 | 0 | 0.02435 | 0.002008 | 0.013182 | 0 | 0 | 0.00139 |
Macrophages M0 | 0.014514 | 0.090352 | 0.025032 | 0.104725 | 0.16705 | 0.224299 | 0.078476 | 0.117533 | 0.068365 | 0.109002 |
Macrophages M1 | 0.135967 | 0.103223 | 0.100643 | 0.012271 | 0 | 0.080839 | 0.078876 | 0.122465 | 0.063667 | 0.103607 |
Macrophages M2 | 0.089259 | 0.159524 | 0.044703 | 0.137346 | 0.428193 | 0.156385 | 0.101052 | 0.10287 | 0.071646 | 0.077649 |
Dendritic cells resting | 0.014316 | 0.019249 | 0.059299 | 0.006178 | 0 | 0.022708 | 0.043902 | 0 | 0 | 0.004566 |
将免疫浸润的结果合并到metadata中方便后续做比较分析:
Rscript $scriptdir/merge_metadata_genexpdata.r -m ../08.Nomogram/nomogram_metadata.tsv -g ../03.TIME/immu/timer.res.tsv \ -b barcode -p metadata_risk_score_timer
以上就是关于“R语言怎么在metadata中添加基因表达数据”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。