这篇文章主要介绍“MFP”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“MFP”文章能帮助大家解决问题。
分子功能肖像
# Python3.7 import pandas as pd from portraits.clustering import clustering_profile_metrics, clustering_profile_metrics_plot from portraits.utils import read_gene_sets, ssgsea_formula, median_scale # Example script # Read signatures gmt = read_gene_sets('signatures.gmt') # GMT format like in MSIGdb # Read expressions exp = pd.read_csv('expression.tsv', sep='\t', index_col=0) # log2+1 transformed; Genes in columns exp=exp.T # Calc signature scores signature_scores = ssgsea_formula(exp, gmt) # Scale signatures signature_scores_scaled = median_scale(signature_scores) signature_scores_scaled.to_csv('signature_scores.tsv', sep='\t', index=True) # Check the clustering within a range of 30 to 65% similarity. # >65% - usually graph is not connected; <30% - unreasonable correlation clustering_metrics = clustering_profile_metrics(signature_scores_scaled, threshold_mm=(.3, .65), step=.01) # Visualize the partitions fig,ax=clustering_profile_metrics_plot(clustering_metrics) fig.savefig('heat.png', dpi=300) # Then select the best threshold using one ore more metrics. best_threshold = '0.51' #best_threshold = 0.51 def detect_type(ser, scores): #cmeans = pd.DataFrame({cg: scores.loc[samps.index].mean() for cg, samps in ser.groupby(ser)}) cmeans = pd.DataFrame({cg: scores.loc[samps.index].mean() for cg, samps in ser.groupby("group")}) print(cmeans) mapper = {} deltas = (cmeans.loc[['Angiogenesis', 'Endothelium', 'CAF', 'Matrix', 'Matrix_remodeling']].mean() - cmeans.loc[['MHCII', 'Antitumor_cytokines', 'Coactivation_molecules', 'B_cells', 'NK_cells', 'Checkpoint_inhibition', 'Effector_cells', 'T_cells', 'Th2_signature', 'T_cell_traffic', 'MHCI']].mean()).sort_values() mapper[deltas.index[-1]] = 'F' # That's fibrotic mapper[deltas.index[0]] = 'IE' # Immune enriched, non-fibrotic cmeans.pop(deltas.index[-1]) cmeans.pop(deltas.index[0]) print(deltas) print(cmeans) deltas = (cmeans.loc[['Angiogenesis', 'Endothelium', 'CAF', 'Matrix', 'Matrix_remodeling', 'Protumor_cytokines', 'Neutrophil_signature', 'Granulocyte_traffic', 'Macrophages', 'Macrophage_DC_traffic', 'MDSC_traffic', 'MDSC', 'Th3_signature', 'T_reg_traffic', 'Treg', 'M1_signatures', 'MHCII', 'Antitumor_cytokines', 'Coactivation_molecules', 'B_cells', 'NK_cells', 'Checkpoint_inhibition', 'Effector_cells', 'T_cells', 'Th2_signature', 'T_cell_traffic', 'MHCI', 'EMT_signature']].mean() - cmeans.loc['Proliferation_rate']).sort_values() mapper[deltas.index[-1]] = 'IE/F' # Immune enriched & fibrotic mapper[deltas.index[0]] = 'D' # Desert print(deltas) print(cmeans) print(mapper) #return ser.map(mapper).rename('MFP') return mapper print(clustering_metrics.axes) # Detect cluster types ser=clustering_metrics.loc[best_threshold] df = pd.DataFrame({"sam":ser.perc.index,"group":ser.perc}) df.to_csv('group_clusters.tsv', sep='\t', index=False) final_clusters = detect_type(df, signature_scores_scaled) # Output the clusters final_clusters.to_csv('final_clusters.tsv', sep='\t', index=True)
关于“MFP”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注亿速云行业资讯频道,小编每天都会为大家更新不同的知识点。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。