温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Pytorch中如何测试nn.Dropout

发布时间:2022-02-24 09:43:22 来源:亿速云 阅读:198 作者:小新 栏目:开发技术

这篇文章主要介绍了Pytorch中如何测试nn.Dropout,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

结论

Pytorch的nn.Dropout在每次被调用时dropout掉的参数都不一样,即使是同一次forward也不同。

如果模型里多次使用的dropout的dropout rate大小相同,用同一个dropout层即可。

如代码所示:

import torch
import torch.nn as nn
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.dropout_1 = nn.Dropout(0.5)
        self.dropout_2 = nn.Dropout(0.5)
    def forward(self, input):
        # print(input)
        drop_1 = self.dropout_1(input)
        print(drop_1)
        drop_1 = self.dropout_1(input)
        print(drop_1)
        drop_2 = self.dropout_2(input)
        print(drop_2)
if __name__ == '__main__':
    i = torch.rand((5, 5))
    m = MyModel()
    m.forward(i)

结果如下:

*\python.exe */model.pytensor([[0.0000, 0.0914, 0.0000, 1.4095, 0.0000],[0.0000, 0.0000, 0.1726, 1.3800, 0.0000],[1.7651, 0.0000, 0.0000, 0.9421, 1.5603],[1.0510, 1.7290, 0.0000, 0.0000, 0.8565],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000]])tensor([[0.0000, 0.0000, 0.4722, 1.4095, 0.0000],[0.0416, 0.0000, 0.1726, 1.3800, 1.3193],[0.0000, 0.3401, 0.6550, 0.0000, 0.0000],[1.0510, 1.7290, 1.5515, 0.0000, 0.0000],[0.6388, 0.0000, 0.0000, 1.0122, 0.0000]])tensor([[0.0000, 0.0000, 0.4722, 0.0000, 1.2689],[0.0416, 0.0000, 0.0000, 1.3800, 0.0000],[0.0000, 0.0000, 0.6550, 0.0000, 1.5603],[0.0000, 0.0000, 1.5515, 1.4596, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000]])Process finished with exit code 0

感谢你能够认真阅读完这篇文章,希望小编分享的“Pytorch中如何测试nn.Dropout”这篇文章对大家有帮助,同时也希望大家多多支持亿速云,关注亿速云行业资讯频道,更多相关知识等着你来学习!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI