温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

PyTorch中dropout设置训练和测试模式的实现示例

发布时间:2021-05-27 13:34:59 来源:亿速云 阅读:405 作者:小新 栏目:开发技术

这篇文章主要介绍PyTorch中dropout设置训练和测试模式的实现示例,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

看代码吧~

class Net(nn.Module):
…
model = Net()
…
model.train() # 把module设成训练模式,对Dropout和BatchNorm有影响
model.eval() # 把module设置为预测模式,对Dropout和BatchNorm模块有影响

补充:Pytorch遇到的坑——训练模式和测试模式切换

由于训练的时候Dropout和BN层起作用,每个batch BN层的参数不一样,dropout在训练时随机失效点具有随机性,所以训练和测试要区分开来。

使用时切记要根据实际情况切换:

model.train()
model.eval()

补充:Pytorch在测试与训练过程中的验证结果不一致问题

引言

今天在使用Pytorch导入此前保存的模型进行测试,在过程中发现输出的结果与验证结果差距甚大,经过排查后发现是forward与eval()顺序问题。

现象

此前的错误代码是

input_cpu = torch.ones((1, 2, 160, 160))
    target_cpu =torch.ones((1, 2, 160, 160))
    target_gpu, input_gpu = target_cpu.cuda(), input_cpu.cuda()
    model.set_input_2(input_gpu, target_gpu)
    model.eval()
    model.forward()

应该改为

input_cpu = torch.ones((1, 2, 160, 160))
    target_cpu =torch.ones((1, 2, 160, 160))
    target_gpu, input_gpu = target_cpu.cuda(), input_cpu.cuda()
    model.set_input_2(input_gpu, target_gpu)
    # 先forward再eval
    model.forward()
    model.eval()

以上是“PyTorch中dropout设置训练和测试模式的实现示例”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI