这篇文章主要介绍PyTorch中dropout设置训练和测试模式的实现示例,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
class Net(nn.Module): … model = Net() … model.train() # 把module设成训练模式,对Dropout和BatchNorm有影响 model.eval() # 把module设置为预测模式,对Dropout和BatchNorm模块有影响
补充:Pytorch遇到的坑——训练模式和测试模式切换
由于训练的时候Dropout和BN层起作用,每个batch BN层的参数不一样,dropout在训练时随机失效点具有随机性,所以训练和测试要区分开来。
使用时切记要根据实际情况切换:
model.train() model.eval()
补充:Pytorch在测试与训练过程中的验证结果不一致问题
今天在使用Pytorch导入此前保存的模型进行测试,在过程中发现输出的结果与验证结果差距甚大,经过排查后发现是forward与eval()顺序问题。
此前的错误代码是
input_cpu = torch.ones((1, 2, 160, 160)) target_cpu =torch.ones((1, 2, 160, 160)) target_gpu, input_gpu = target_cpu.cuda(), input_cpu.cuda() model.set_input_2(input_gpu, target_gpu) model.eval() model.forward()
应该改为
input_cpu = torch.ones((1, 2, 160, 160)) target_cpu =torch.ones((1, 2, 160, 160)) target_gpu, input_gpu = target_cpu.cuda(), input_cpu.cuda() model.set_input_2(input_gpu, target_gpu) # 先forward再eval model.forward() model.eval()
以上是“PyTorch中dropout设置训练和测试模式的实现示例”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。