本篇内容介绍了“python常用机器学习及深度学习库有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
目前,随着人工智能的大热,吸引了诸多行业对于人工智能的关注,同时也迎来了一波又一波的人工智能学习的热潮,虽然人工智能背后的原理并不能通过短短一文给予详细介绍,但是像所有学科一样,我们并不需要从头开始”造轮子“,可以通过使用丰富的人工智能框架来快速构建人工智能模型,从而入门人工智能的潮流。
人工智能指的是一系列使机器能够像人类一样处理信息的技术;机器学习是利用计算机编程从历史数据中学习,对新数据进行预测的过程;神经网络是基于生物大脑结构和特征的机器学习的计算机模型;深度学习是机器学习的一个子集,它处理大量的非结构化数据,如人类的语音、文本和图像。因此,这些概念在层次上是相互依存的,人工智能是最广泛的术语,而深度学习是最具体的:
为了大家能够对人工智能常用的 Python
库有一个初步的了解,以选择能够满足自己需求的库进行学习,对目前较为常见的人工智能库进行简要全面的介绍。
NumPy(Numerical Python)
是 Python
的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库,Numpy
底层使用C语言
编写,数组中直接存储对象,而不是存储对象指针,所以其运算效率远高于纯Python代
码。
我们可以在示例中对比下纯Python
与使用Numpy库
在计算列表sin值的速度对比:
import numpy as npimport mathimport randomimport time start = time.time()for i in range(10): list_1 = list(range(1,10000)) for j in range(len(list_1)): list_1[j] = math.sin(list_1[j])print("使用纯Python用时{}s".format(time.time()-start))start = time.time()for i in range(10): list_1 = np.array(np.arange(1,10000)) list_1 = np.sin(list_1)print("使用Numpy用时{}s".format(time.time()-start))
从如下运行结果,可以看到使用 Numpy
库的速度快于纯 Python 编写的代码:
使用纯Python用时0.017444372177124023s 使用Numpy用时0.001619577407836914s
OpenCV
是一个的跨平台计算机视觉库,可以运行在 Linux、Windows 和 Mac OS 操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时也提供了 Python
接口,实现了图像处理和计算机视觉方面的很多通用算法。
下面代码尝试使用一些简单的滤镜,包括图片的平滑处理、高斯模糊等:
import numpy as npimport cv2 as cvfrom matplotlib import pyplot as plt img = cv.imread('h89817032p0.png')kernel = np.ones((5,5),np.float32)/25dst = cv.filter2D(img,-1,kernel)blur_1 = cv.GaussianBlur(img,(5,5),0)blur_2 = cv.bilateralFilter(img,9,75,75)plt.figure(figsize=(10,10))plt.subplot(221),plt.imshow(img[:,:,::-1]),plt.title('Original')plt.xticks([]), plt.yticks([])plt.subplot(222),plt.imshow(dst[:,:,::-1]),plt.title('Averaging')plt.xticks([]), plt.yticks([])plt.subplot(223),plt.imshow(blur_1[:,:,::-1]),plt.title('Gaussian')plt.xticks([]), plt.yticks([])plt.subplot(224),plt.imshow(blur_1[:,:,::-1]),plt.title('Bilateral')plt.xticks([]), plt.yticks([])plt.show()
可以参考OpenCV图像处理基础(变换和去噪),了解更多 OpenCV 图像处理操作。
scikit-image
是基于scipy
的图像处理库,它将图片作为numpy
数组进行处理。
例如,可以利用scikit-image
改变图片比例,scikit-image
提供了rescale
、resize
以及downscale_local_mean
等函数。
from skimage import data, color, iofrom skimage.transform import rescale, resize, downscale_local_mean image = color.rgb2gray(io.imread('h89817032p0.png'))image_rescaled = rescale(image, 0.25, anti_aliasing=False)image_resized = resize(image, (image.shape[0] // 4, image.shape[1] // 4), anti_aliasing=True)image_downscaled = downscale_local_mean(image, (4, 3))plt.figure(figsize=(20,20))plt.subplot(221),plt.imshow(image, cmap='gray'),plt.title('Original')plt.xticks([]), plt.yticks([])plt.subplot(222),plt.imshow(image_rescaled, cmap='gray'),plt.title('Rescaled')plt.xticks([]), plt.yticks([])plt.subplot(223),plt.imshow(image_resized, cmap='gray'),plt.title('Resized')plt.xticks([]), plt.yticks([])plt.subplot(224),plt.imshow(image_downscaled, cmap='gray'),plt.title('Downscaled')plt.xticks([]), plt.yticks([])plt.show()
Python Imaging Library(PIL)
已经成为 Python
事实上的图像处理标准库了,这是由于,PIL
功能非常强大,但API却非常简单易用。
但是由于PIL仅支持到 Python 2.7
,再加上年久失修,于是一群志愿者在 PIL
的基础上创建了兼容的版本,名字叫 Pillow
,支持最新 Python 3.x
,又加入了许多新特性,因此,我们可以跳过 PIL
,直接安装使用 Pillow
。
使用 Pillow
生成字母验证码图片:
from PIL import Image, ImageDraw, ImageFont, ImageFilterimport random# 随机字母:def rndChar(): return chr(random.randint(65, 90))# 随机颜色1:def rndColor(): return (random.randint(64, 255), random.randint(64, 255), random.randint(64, 255))# 随机颜色2:def rndColor2(): return (random.randint(32, 127), random.randint(32, 127), random.randint(32, 127))# 240 x 60:width = 60 * 6height = 60 * 6image = Image.new('RGB', (width, height), (255, 255, 255))# 创建Font对象:font = ImageFont.truetype('/usr/share/fonts/wps-office/simhei.ttf', 60)# 创建Draw对象:draw = ImageDraw.Draw(image)# 填充每个像素:for x in range(width): for y in range(height): draw.point((x, y), fill=rndColor())# 输出文字:for t in range(6): draw.text((60 * t + 10, 150), rndChar(), font=font, fill=rndColor2())# 模糊:image = image.filter(ImageFilter.BLUR)image.save('code.jpg', 'jpeg')
SimpleCV
是一个用于构建计算机视觉应用程序的开源框架。使用它,可以访问高性能的计算机视觉库,如 OpenCV,而不必首先了解位深度、文件格式、颜色空间、缓冲区管理、特征值或矩阵等术语。但其对于 Python3 的支持很差很差,在 Python3.7 中使用如下代码:
from SimpleCV import Image, Color, Display# load an image from imgurimg = Image('http://i.imgur.com/lfAeZ4n.png')# use a keypoint detector to find areas of interestfeats = img.findKeypoints()# draw the list of keypointsfeats.draw(color=Color.RED)# show the resulting image. img.show()# apply the stuff we found to the image.output = img.applyLayers()# save the results.output.save('juniperfeats.png')
会报如下错误,因此不建议在 Python3
中使用:
SyntaxError: Missing parentheses in call to 'print'. Did you mean print('unit test')?
Mahotas
是一个快速计算机视觉算法库,其构建在 Numpy
之上,目前拥有超过100种图像处理和计算机视觉功能,并在不断增长。
使用 Mahotas
加载图像,并对像素进行操作:
import numpy as npimport mahotasimport mahotas.demosfrom mahotas.thresholding import soft_thresholdfrom matplotlib import pyplot as pltfrom os import path f = mahotas.demos.load('lena', as_grey=True)f = f[128:,128:]plt.gray()# Show the data:print("Fraction of zeros in original image: {0}".format(np.mean(f==0)))plt.imshow(f)plt.show()
Ilastik
能够给用户提供良好的基于机器学习的生物信息图像分析服务,利用机器学习算法,轻松地分割,分类,跟踪和计数细胞或其他实验数据。大多数操作都是交互式的,并不需要机器学习专业知识。可以参考https://www.ilastik.org/documentation/basics/installation.html进行安装使用。
Scikit-learn
是针对 Python
编程语言的免费软件机器学习库。它具有各种分类,回归和聚类算法,包括支持向量机,随机森林,梯度提升,k均值和 DBSCAN 等多种机器学习算法。
使用Scikit-learn
实现KMeans
算法:
import timeimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.cluster import MiniBatchKMeans, KMeansfrom sklearn.metrics.pairwise import pairwise_distances_argminfrom sklearn.datasets import make_blobs# Generate sample datanp.random.seed(0)batch_size = 45centers = [[1, 1], [-1, -1], [1, -1]]n_clusters = len(centers)X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7)# Compute clustering with Meansk_means = KMeans(init='k-means++', n_clusters=3, n_init=10)t0 = time.time()k_means.fit(X)t_batch = time.time() - t0# Compute clustering with MiniBatchKMeansmbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0)t0 = time.time()mbk.fit(X)t_mini_batch = time.time() - t0# Plot resultfig = plt.figure(figsize=(8, 3))fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9)colors = ['#4EACC5', '#FF9C34', '#4E9A06']# We want to have the same colors for the same cluster from the# MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per# closest one.k_means_cluster_centers = k_means.cluster_centers_ order = pairwise_distances_argmin(k_means.cluster_centers_, mbk.cluster_centers_)mbk_means_cluster_centers = mbk.cluster_centers_[order]k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers)mbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers)# KMeansfor k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] plt.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6)plt.title('KMeans')plt.xticks(())plt.yticks(())plt.show()
SciPy
库提供了许多用户友好和高效的数值计算,如数值积分、插值、优化、线性代数等。SciPy
库定义了许多数学物理的特殊函数,包括椭圆函数、贝塞尔函数、伽马函数、贝塔函数、超几何函数、抛物线圆柱函数等等。
from scipy import specialimport matplotlib.pyplot as pltimport numpy as npdef drumhead_height(n, k, distance, angle, t): kth_zero = special.jn_zeros(n, k)[-1] return np.cos(t) * np.cos(n*angle) * special.jn(n, distance*kth_zero)theta = np.r_[0:2*np.pi:50j]radius = np.r_[0:1:50j]x = np.array([r * np.cos(theta) for r in radius])y = np.array([r * np.sin(theta) for r in radius])z = np.array([drumhead_height(1, 1, r, theta, 0.5) for r in radius])fig = plt.figure()ax = fig.add_axes(rect=(0, 0.05, 0.95, 0.95), projection='3d')ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap='RdBu_r', vmin=-0.5, vmax=0.5)ax.set_xlabel('X')ax.set_ylabel('Y')ax.set_xticks(np.arange(-1, 1.1, 0.5))ax.set_yticks(np.arange(-1, 1.1, 0.5))ax.set_zlabel('Z')plt.show()
NLTK
是构建Python程序以处理自然语言的库。它为50多个语料库和词汇资源(如 WordNet
)提供了易于使用的接口,以及一套用于分类、分词、词干、标记、解析和语义推理的文本处理库、工业级自然语言处理 (Natural Language Processing, NLP)
库的包装器。
NLTK被称为 “a wonderful tool for teaching, and working in, computational linguistics using Python”
。
import nltkfrom nltk.corpus import treebank# 首次使用需要下载nltk.download('punkt')nltk.download('averaged_perceptron_tagger')nltk.download('maxent_ne_chunker')nltk.download('words')nltk.download('treebank')sentence = """At eight o'clock on Thursday morning Arthur didn't feel very good."""# Tokenizetokens = nltk.word_tokenize(sentence)tagged = nltk.pos_tag(tokens)# Identify named entitiesentities = nltk.chunk.ne_chunk(tagged)# Display a parse treet = treebank.parsed_sents('wsj_0001.mrg')[0]t.draw()
spaCy
是一个免费的开源库,用于 Python
中的高级 NLP。它可以用于构建处理大量文本的应用程序;也可以用来构建信息提取或自然语言理解系统,或者对文本进行预处理以进行深度学习。
import spacy texts = [ "Net income was $9.4 million compared to the prior year of $2.7 million.", "Revenue exceeded twelve billion dollars, with a loss of $1b.", ] nlp = spacy.load("en_core_web_sm") for doc in nlp.pipe(texts, disable=["tok2vec", "tagger", "parser", "attribute_ruler", "lemmatizer"]): # Do something with the doc here print([(ent.text, ent.label_) for ent in doc.ents])
nlp.pipe
生成 Doc 对象,因此我们可以对它们进行迭代并访问命名实体预测:
[('$9.4 million', 'MONEY'), ('the prior year', 'DATE'), ('$2.7 million', 'MONEY')][('twelve billion dollars', 'MONEY'), ('1b', 'MONEY')]
librosa
是一个用于音乐和音频分析的 Python 库,它提供了创建音乐信息检索系统所必需的功能和函数。
# Beat tracking exampleimport librosa# 1. Get the file path to an included audio examplefilename = librosa.example('nutcracker')# 2. Load the audio as a waveform `y`# Store the sampling rate as `sr`y, sr = librosa.load(filename)# 3. Run the default beat trackertempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)print('Estimated tempo: {:.2f} beats per minute'.format(tempo))# 4. Convert the frame indices of beat events into timestampsbeat_times = librosa.frames_to_time(beat_frames, sr=sr)
Pandas
是一个快速、强大、灵活且易于使用的开源数据分析和操作工具, Pandas
可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据,可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工特征。Pandas
广泛应用在学术、金融、统计学等各个数据分析领域。
import matplotlib.pyplot as pltimport pandas as pdimport numpy as np ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000))ts = ts.cumsum()df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list("ABCD"))df = df.cumsum()df.plot()plt.show()
Matplotlib
是Python的绘图库,它提供了一整套和 matlab
相似的命令 API,可以生成出版质量级别的精美图形,Matplotlib
使绘图变得非常简单,在易用性和性能间取得了优异的平衡。
使用 Matplotlib
绘制多曲线图:
# plot_multi_curve.pyimport numpy as npimport matplotlib.pyplot as plt x = np.linspace(0.1, 2 * np.pi, 100)y_1 = x y_2 = np.square(x)y_3 = np.log(x)y_4 = np.sin(x)plt.plot(x,y_1)plt.plot(x,y_2)plt.plot(x,y_3)plt.plot(x,y_4)plt.show()
有关更多Matplotlib
绘图的介绍可以参考此前博文———Python-Matplotlib可视化。
Seaborn
是在 Matplotlib
的基础上进行了更高级的API封装的Python数据可视化库,从而使得作图更加容易,应该把 Seaborn
视为 Matplotlib
的补充,而不是替代物。
import seaborn as snsimport matplotlib.pyplot as plt sns.set_theme(style="ticks")df = sns.load_dataset("penguins")sns.pairplot(df, hue="species")plt.show()
Orange
是一个开源的数据挖掘和机器学习软件,提供了一系列的数据探索、可视化、预处理以及建模组件。Orange
拥有漂亮直观的交互式用户界面,非常适合新手进行探索性数据分析和可视化展示;同时高级用户也可以将其作为 Python
的一个编程模块进行数据操作和组件开发。
使用 pip
即可安装 Orange
,好评~
$ pip install orange3
安装完成后,在命令行输入 orange-canvas
命令即可启动 Orange
图形界面:
$ orange-canvas
启动完成后,即可看到 Orange
图形界面,进行各种操作。
PyBrain
是 Python
的模块化机器学习库。它的目标是为机器学习任务和各种预定义的环境提供灵活、易于使用且强大的算法来测试和比较算法。PyBrain
是 Python-Based Reinforcement Learning, Artificial Intelligence and Neural Network Library
的缩写。
我们将利用一个简单的例子来展示 PyBrain
的用法,构建一个多层感知器 (Multi Layer Perceptron, MLP)。
首先,我们创建一个新的前馈网络对象:
from pybrain.structure import FeedForwardNetwork n = FeedForwardNetwork()
接下来,构建输入、隐藏和输出层:
from pybrain.structure import LinearLayer, SigmoidLayer inLayer = LinearLayer(2)hiddenLayer = SigmoidLayer(3)outLayer = LinearLayer(1)
为了使用所构建的层,必须将它们添加到网络中:
n.addInputModule(inLayer)n.addModule(hiddenLayer)n.addOutputModule(outLayer)
可以添加多个输入和输出模块。为了向前计算和反向误差传播,网络必须知道哪些层是输入、哪些层是输出。
这就需要明确确定它们应该如何连接。为此,我们使用最常见的连接类型,全连接层,由 FullConnection 类实现:
from pybrain.structure import FullConnection in_to_hidden = FullConnection(inLayer, hiddenLayer)hidden_to_out = FullConnection(hiddenLayer, outLayer)
与层一样,我们必须明确地将它们添加到网络中:
n.addConnection(in_to_hidden)n.addConnection(hidden_to_out)
所有元素现在都已准备就位,最后,我们需要调用.sortModules()方法使MLP可用:
n.sortModules()
这个调用会执行一些内部初始化,这在使用网络之前是必要的。
MILK(MACHINE LEARNING TOOLKIT)
是 Python 语言的机器学习工具包。它主要是包含许多分类器比如 SVMS、K-NN、随机森林以及决策树中使用监督分类法,它还可执行特征选择,可以形成不同的例如无监督学习、密切关系传播和由 MILK 支持的 K-means 聚类等分类系统。
使用 MILK
训练一个分类器:
import numpy as npimport milk features = np.random.rand(100,10)labels = np.zeros(100)features[50:] += .5labels[50:] = 1learner = milk.defaultclassifier()model = learner.train(features, labels)# Now you can use the model on new examples:example = np.random.rand(10)print(model.apply(example))example2 = np.random.rand(10)example2 += .5print(model.apply(example2))
TensorFlow
是一个端到端开源机器学习平台。它拥有一个全面而灵活的生态系统,一般可以将其分为 TensorFlow1.x 和 TensorFlow2.x,TensorFlow1.x 与 TensorFlow2.x 的主要区别在于 TF1.x 使用静态图而 TF2.x 使用Eager Mode动态图。
这里主要使用TensorFlow2.x作为示例,展示在 TensorFlow2.x 中构建卷积神经网络 (Convolutional Neural Network, CNN)。
import tensorflow as tffrom tensorflow.keras import datasets, layers, models# 数据加载(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()# 数据预处理train_images, test_images = train_images / 255.0, test_images / 255.0# 模型构建model = models.Sequential()model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))model.add(layers.MaxPooling2D((2, 2)))model.add(layers.Conv2D(64, (3, 3), activation='relu'))model.add(layers.MaxPooling2D((2, 2)))model.add(layers.Conv2D(64, (3, 3), activation='relu'))model.add(layers.Flatten())model.add(layers.Dense(64, activation='relu'))model.add(layers.Dense(10))# 模型编译与训练model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])history = model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))
想要了解更多Tensorflow2.x的示例,可以参考专栏 Tensorflow.
PyTorch
的前身是 Torch,其底层和 Torch 框架一样,但是使用 Python 重新写了很多内容,不仅更加灵活,支持动态图,而且提供了 Python 接口。
# 导入库import torchfrom torch import nnfrom torch.utils.data import DataLoaderfrom torchvision import datasetsfrom torchvision.transforms import ToTensor, Lambda, Composeimport matplotlib.pyplot as plt# 模型构建device = "cuda" if torch.cuda.is_available() else "cpu"print("Using {} device".format(device))# Define modelclass NeuralNetwork(nn.Module): def __init__(self): super(NeuralNetwork, self).__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(28*28, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 10), nn.ReLU() ) def forward(self, x): x = self.flatten(x) logits = self.linear_relu_stack(x) return logits model = NeuralNetwork().to(device)# 损失函数和优化器loss_fn = nn.CrossEntropyLoss()optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)# 模型训练def train(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) for batch, (X, y) in enumerate(dataloader): X, y = X.to(device), y.to(device) # Compute prediction error pred = model(X) loss = loss_fn(pred, y) # Backpropagation optimizer.zero_grad() loss.backward() optimizer.step() if batch % 100 == 0: loss, current = loss.item(), batch * len(X) print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
Theano
是一个 Python 库,它允许定义、优化和有效地计算涉及多维数组的数学表达式,建在 NumPy 之上。
在 Theano
中实现计算雅可比矩阵:
import theanoimport theano.tensor as T x = T.dvector('x')y = x ** 2J, updates = theano.scan(lambda i, y,x : T.grad(y[i], x), sequences=T.arange(y.shape[0]), non_sequences=[y,x])f = theano.function([x], J, updates=updates)f([4, 4])
Keras
是一个用 Python 编写的高级神经网络 API,它能够以 TensorFlow, CNTK, 或者 Theano 作为后端运行。Keras 的开发重点是支持快速的实验,能够以最小的时延把想法转换为实验结果。
from keras.models import Sequentialfrom keras.layers import Dense# 模型构建model = Sequential()model.add(Dense(units=64, activation='relu', input_dim=100))model.add(Dense(units=10, activation='softmax'))# 模型编译与训练model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])model.fit(x_train, y_train, epochs=5, batch_size=32)
在 Caffe2 官方网站上,这样说道:Caffe2
现在是 PyTorch
的一部分。虽然这些 api 将继续工作,但鼓励使用 PyTorch api。
MXNet
是一款设计为效率和灵活性的深度学习框架。它允许混合符号编程和命令式编程,从而最大限度提高效率和生产力。
使用 MXNet
构建手写数字识别模型:
import mxnet as mxfrom mxnet import gluonfrom mxnet.gluon import nnfrom mxnet import autograd as agimport mxnet.ndarray as F# 数据加载mnist = mx.test_utils.get_mnist()batch_size = 100train_data = mx.io.NDArrayIter(mnist['train_data'], mnist['train_label'], batch_size, shuffle=True)val_data = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size)# CNN模型class Net(gluon.Block): def __init__(self, **kwargs): super(Net, self).__init__(**kwargs) self.conv1 = nn.Conv2D(20, kernel_size=(5,5)) self.pool1 = nn.MaxPool2D(pool_size=(2,2), strides = (2,2)) self.conv2 = nn.Conv2D(50, kernel_size=(5,5)) self.pool2 = nn.MaxPool2D(pool_size=(2,2), strides = (2,2)) self.fc1 = nn.Dense(500) self.fc2 = nn.Dense(10) def forward(self, x): x = self.pool1(F.tanh(self.conv1(x))) x = self.pool2(F.tanh(self.conv2(x))) # 0 means copy over size from corresponding dimension. # -1 means infer size from the rest of dimensions. x = x.reshape((0, -1)) x = F.tanh(self.fc1(x)) x = F.tanh(self.fc2(x)) return x net = Net()# 初始化与优化器定义# set the context on GPU is available otherwise CPUctx = [mx.gpu() if mx.test_utils.list_gpus() else mx.cpu()]net.initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.03})# 模型训练# Use Accuracy as the evaluation metric.metric = mx.metric.Accuracy()softmax_cross_entropy_loss = gluon.loss.SoftmaxCrossEntropyLoss()for i in range(epoch): # Reset the train data iterator. train_data.reset() for batch in train_data: data = gluon.utils.split_and_load(batch.data[0], ctx_list=ctx, batch_axis=0) label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0) outputs = [] # Inside training scope with ag.record(): for x, y in zip(data, label): z = net(x) # Computes softmax cross entropy loss. loss = softmax_cross_entropy_loss(z, y) # Backpropogate the error for one iteration. loss.backward() outputs.append(z) metric.update(label, outputs) trainer.step(batch.data[0].shape[0]) # Gets the evaluation result. name, acc = metric.get() # Reset evaluation result to initial state. metric.reset() print('training acc at epoch %d: %s=%f'%(i, name, acc))
飞桨 (PaddlePaddle)
以百度多年的深度学习技术研究和业务应用为基础,集深度学习核心训练和推理框架、基础模型库、端到端开发套件、丰富的工具组件于一体。是中国首个自主研发、功能完备、开源开放的产业级深度学习平台。
使用 PaddlePaddle
实现 LeNtet5
:
# 导入需要的包import paddleimport numpy as npfrom paddle.nn import Conv2D, MaxPool2D, Linear## 组网import paddle.nn.functional as F# 定义 LeNet 网络结构class LeNet(paddle.nn.Layer): def __init__(self, num_classes=1): super(LeNet, self).__init__() # 创建卷积和池化层 # 创建第1个卷积层 self.conv1 = Conv2D(in_channels=1, out_channels=6, kernel_size=5) self.max_pool1 = MaxPool2D(kernel_size=2, stride=2) # 尺寸的逻辑:池化层未改变通道数;当前通道数为6 # 创建第2个卷积层 self.conv2 = Conv2D(in_channels=6, out_channels=16, kernel_size=5) self.max_pool2 = MaxPool2D(kernel_size=2, stride=2) # 创建第3个卷积层 self.conv3 = Conv2D(in_channels=16, out_channels=120, kernel_size=4) # 尺寸的逻辑:输入层将数据拉平[B,C,H,W] -> [B,C*H*W] # 输入size是[28,28],经过三次卷积和两次池化之后,C*H*W等于120 self.fc1 = Linear(in_features=120, out_features=64) # 创建全连接层,第一个全连接层的输出神经元个数为64, 第二个全连接层输出神经元个数为分类标签的类别数 self.fc2 = Linear(in_features=64, out_features=num_classes) # 网络的前向计算过程 def forward(self, x): x = self.conv1(x) # 每个卷积层使用Sigmoid激活函数,后面跟着一个2x2的池化 x = F.sigmoid(x) x = self.max_pool1(x) x = F.sigmoid(x) x = self.conv2(x) x = self.max_pool2(x) x = self.conv3(x) # 尺寸的逻辑:输入层将数据拉平[B,C,H,W] -> [B,C*H*W] x = paddle.reshape(x, [x.shape[0], -1]) x = self.fc1(x) x = F.sigmoid(x) x = self.fc2(x) return x
CNTK(Cognitive Toolkit)
是一个深度学习工具包,通过有向图将神经网络描述为一系列计算步骤。在这个有向图中,叶节点表示输入值或网络参数,而其他节点表示对其输入的矩阵运算。CNTK
可以轻松地实现和组合流行的模型类型,如 CNN
等。CNTK
用网络描述语言 (network description language, NDL)
描述一个神经网络。 简单的说,要描述输入的 feature,输入的 label,一些参数,参数和输入之间的计算关系,以及目标节点是什么。
NDLNetworkBuilder=[ run=ndlLR ndlLR=[ # sample and label dimensions SDim=$dimension$ LDim=1 features=Input(SDim, 1) labels=Input(LDim, 1) # parameters to learn B0 = Parameter(4) W0 = Parameter(4, SDim) B = Parameter(LDim) W = Parameter(LDim, 4) # operations t0 = Times(W0, features) z0 = Plus(t0, B0) s0 = Sigmoid(z0) t = Times(W, s0) z = Plus(t, B) s = Sigmoid(z) LR = Logistic(labels, s) EP = SquareError(labels, s) # root nodes FeatureNodes=(features) LabelNodes=(labels) CriteriaNodes=(LR) EvalNodes=(EP) OutputNodes=(s,t,z,s0,W0) ] ]
库名 | 官方网站 | 简介 |
---|---|---|
NumPy | http://www.numpy.org/ | 提供对大型多维阵列的支持,NumPy是计算机视觉中的一个关键库,因为图像可以表示为多维数组,将图像表示为NumPy数组有许多优点 |
OpenCV | https://opencv.org/ | 开源的计算机视觉库 |
Scikit-image | https:// scikit-image.org/ | 图像处理算法的集合,由scikit-image操作的图像只能是NumPy数组 |
Python Imaging Library(PIL) | http://www.pythonware.com/products/pil/ | 图像处理库,提供强大的图像处理和图形功能 |
Pillow | https://pillow.readthedocs.io/ | PIL的一个分支 |
SimpleCV | http://simplecv.org/ | 计算机视觉框架,提供了处理图像处理的关键功能 |
Mahotas | https://mahotas.readthedocs.io/ | 提供了用于图像处理和计算机视觉的一组函数,它最初是为生物图像信息学而设计的;但是,现在它在其他领域也发挥了重要作用,它完全基于numpy数组作为其数据类型 |
Ilastik | http://ilastik.org/ | 用户友好且简单的交互式图像分割、分类和分析工具 |
Scikit-learn | http://scikit-learn.org/ | 机器学习库,具有各种分类、回归和聚类算法 |
SciPy | https://www.scipy.org/ | 科学和技术计算库 |
NLTK | https://www.nltk.org/ | 处理自然语言数据的库和程序 |
spaCy | https://spacy.io/ | 开源软件库,用于Python中的高级自然语言处理 |
LibROSA | https://librosa.github.io/librosa/ | 用于音乐和音频处理的库 |
Pandas | https://pandas.pydata.org/ | 构建在NumPy之上的库,提供高级数据计算工具和易于使用的数据结构 |
Matplotlib | https://matplotlib.org | 绘图库,它提供了一整套和 matlab 相似的命令 API,可以生成所需的出版质量级别的图形 |
Seaborn | https://seaborn.pydata.org/ | 是建立在Matplotlib之上的绘图库 |
Orange | https://orange.biolab.si/ | 面向新手和专家的开源机器学习和数据可视化工具包 |
PyBrain | http://pybrain.org/ | 机器学习库,为机器学习提供易于使用的最新算法 |
Milk | http://luispedro.org/software/milk/ | 机器学习工具箱,主要用于监督学习中的多分类问题 |
TensorFlow | https://www.tensorflow.org/ | 开源的机器学习和深度学习库 |
PyTorch | https://pytorch.org/ | 开源的机器学习和深度学习库 |
Theano | http://deeplearning.net/software/theano/ | 用于快速数学表达式、求值和计算的库,已编译为可在CPU和GPU架构上运行 |
Keras | https://keras.io/ | 高级深度学习库,可以在 TensorFlow、CNTK、Theano 或 Microsoft Cognitive Toolkit 之上运行 |
Caffe2 | https://caffe2.ai/ | Caffe2 是一个兼具表现力、速度和模块性的深度学习框架,是 Caffe 的实验性重构,能以更灵活的方式组织计算 |
MXNet | https://mxnet.apache.org/ | 设计为效率和灵活性的深度学习框架,允许混合符号编程和命令式编程 |
PaddlePaddle | https://www.paddlepaddle.org.cn | 以百度多年的深度学习技术研究和业务应用为基础,集深度学习核心训练和推理框架、基础模型库、端到端开发套件、丰富的工具组件于一体 |
CNTK | https://cntk.ai/ | 深度学习工具包,通过有向图将神经网络描述为一系列计算步骤。在这个有向图中,叶节点表示输入值或网络参数,而其他节点表示对其输入的矩阵运算 |
可以根据其主要用途将这些库进行分类:
类别 | 库 |
---|---|
图像处理 | NumPy、OpenCV、scikit image、PIL、Pillow、SimpleCV、Mahotas、ilastik |
文本处理 | NLTK、spaCy、NumPy、scikit learn、PyTorch |
音频处理 | LibROSA |
机器学习 | pandas, scikit-learn, Orange, PyBrain, Milk |
数据查看 | Matplotlib、Seaborn、scikit-learn、Orange |
深度学习 | TensorFlow、Pytorch、Theano、Keras、Caffe2、MXNet、PaddlePaddle、CNTK |
科学计算 | SciPy |
“python常用机器学习及深度学习库有哪些”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。