温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

pytorch tensor内所有元素相乘怎么实现

发布时间:2022-07-18 09:40:35 来源:亿速云 阅读:146 作者:iii 栏目:开发技术

这篇“pytorch tensor内所有元素相乘怎么实现”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“pytorch tensor内所有元素相乘怎么实现”文章吧。

tensor内所有元素相乘

a = torch.Tensor([1,2,3])
print(torch.prod(a))

输出 

tensor(6.)

tensor乘法运算汇总与解析

元素一一相乘

该操作又称作 “哈达玛积”, 简单来说就是 tensor 元素逐个相乘。这个操作,是通过 * 也就是常规的乘号操作符定义的操作结果。torch.mul 是等价的。

import torch
def element_by_element():
    
    x = torch.tensor([1, 2, 3])
    y = torch.tensor([4, 5, 6])
    
    return x * y, torch.mul(x, y)
element_by_element()
(tensor([ 4, 10, 18]), tensor([ 4, 10, 18]))

这个操作是可以 broad cast 的。

def element_by_element_broadcast():
    
    x = torch.tensor([1, 2, 3])
    y = 2
    
    return x * y
element_by_element_broadcast()
tensor([2, 4, 6])

向量点乘

torch.matmul: If both tensors are 1-dimensional, the dot product (scalar) is returned.

如果都是1维的,返回的就是 dot product 结果

def vec_dot_product():
    
    x = torch.tensor([1, 2, 3])
    y = torch.tensor([4, 5, 6])
    
    return torch.matmul(x, y)
vec_dot_product()
tensor(32)

矩阵乘法

torch.matmul: If both arguments are 2-dimensional, the matrix-matrix product is returned.

如果都是2维,那么就是矩阵乘法的结果返回。与 torch.mm 是等价的,torch.mm 仅仅能处理的是矩阵乘法。

def matrix_multiple():
    
    x = torch.tensor([
        [1, 2, 3],
        [4, 5, 6]
    ])
    y = torch.tensor([
        [7, 8],
        [9, 10],
        [11, 12]
    ])
    
    return torch.matmul(x, y), torch.mm(x, y)
matrix_multiple()
(tensor([[ 58,  64],
         [139, 154]]), tensor([[ 58,  64],
         [139, 154]]))

vector 与 matrix 相乘

torch.matmul: If the first argument is 1-dimensional and the second argument is 2-dimensional, a 1 is prepended to its dimension for the purpose of the matrix multiply. After the matrix multiply, the prepended dimension is removed.

如果第一个是 vector, 第二个是 matrix, 会在 vector 中增加一个维度。也就是 vector 变成了 与 matrix 相乘之后,变成 , 在结果中将 维 再去掉。

def vec_matrix():
    x = torch.tensor([1, 2, 3])
    y = torch.tensor([
        [7, 8],
        [9, 10],
        [11, 12]
    ])
    
    return torch.matmul(x, y)
vec_matrix()
tensor([58, 64])

matrix 与 vector 相乘

同样的道理, vector会被扩充一个维度。

def matrix_vec():
    x = torch.tensor([
        [1, 2, 3],
        [4, 5, 6]
    ])
    y = torch.tensor([
        7, 8, 9
    ])
    
    return torch.matmul(x, y)
matrix_vec()
tensor([ 50, 122])

带有batch_size 的 broad cast乘法

def batched_matrix_broadcasted_vector():
    x = torch.tensor([
        [
            [1, 2], [3, 4]
        ],
        [
            [5, 6], [7, 8]
        ]
    ])
    
    print(f"x shape: {x.size()} \n {x}")
    y = torch.tensor([1, 3])
    
    return torch.matmul(x, y)
batched_matrix_broadcasted_vector()
x shape: torch.Size([2, 2, 2]) 
 tensor([[[1, 2],
         [3, 4]],
        [[5, 6],
         [7, 8]]])
tensor([[ 7, 15],
        [23, 31]])
batched matrix x batched matrix
def batched_matrix_batched_matrix():
    x = torch.tensor([
        [
            [1, 2, 1], [3, 4, 4]
        ],
        [
            [5, 6, 2], [7, 8, 0]
        ]
    ])
    
    y = torch.tensor([
        [
            [1, 2], 
            [3, 4], 
            [5, 6]
        ],
        [
            [7, 8], 
            [9, 10], 
            [1, 2]
        ]
    ])
    
    print(f"x shape: {x.size()} \n y shape: {y.size()}")
    return torch.matmul(x, y)
xy = batched_matrix_batched_matrix()
print(f"xy shape: {xy.size()} \n {xy}")
x shape: torch.Size([2, 2, 3]) 
 y shape: torch.Size([2, 3, 2])
xy shape: torch.Size([2, 2, 2]) 
 tensor([[[ 12,  16],
         [ 35,  46]],
        [[ 91, 104],
         [121, 136]]])

上面的效果与 torch.bmm 是一样的。matmul 比 bmm 功能更加强大,但是 bmm 的语义非常明确, bmm 处理的只能是 3维的。

def batched_matrix_batched_matrix_bmm():
    x = torch.tensor([
        [
            [1, 2, 1], [3, 4, 4]
        ],
        [
            [5, 6, 2], [7, 8, 0]
        ]
    ])
    
    y = torch.tensor([
        [
            [1, 2], 
            [3, 4], 
            [5, 6]
        ],
        [
            [7, 8], 
            [9, 10], 
            [1, 2]
        ]
    ])
    
    print(f"x shape: {x.size()} \n y shape: {y.size()}")
    return torch.bmm(x, y)
xy = batched_matrix_batched_matrix()
print(f"xy shape: {xy.size()} \n {xy}")
x shape: torch.Size([2, 2, 3]) 
 y shape: torch.Size([2, 3, 2])
xy shape: torch.Size([2, 2, 2]) 
 tensor([[[ 12,  16],
         [ 35,  46]],
        [[ 91, 104],
         [121, 136]]])
tensordot
def tesnordot():
    x = torch.tensor([
        [1, 2, 1], 
        [3, 4, 4]])
    y = torch.tensor([
        [7, 8], 
        [9, 10], 
        [1, 2]])
    print(f"x shape: {x.size()}, y shape: {y.size()}")
    return torch.tensordot(x, y, dims=([0], [1]))
tesnordot()
x shape: torch.Size([2, 3]), y shape: torch.Size([3, 2])
tensor([[31, 39,  7],
        [46, 58, 10],
        [39, 49,  9]])

以上就是关于“pytorch tensor内所有元素相乘怎么实现”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI