本篇内容主要讲解“redis分布式锁如何优化”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“redis分布式锁如何优化”吧!
问题:删除操作缺乏原子性。
场景:
index1执行删除时,查询到的lock值确实和uuid相等
uuid=v1
set(lock,uuid);
index1执行删除前,lock刚好过期时间已到,被redis自动释放,在redis中没有了lock,没有了锁。
index2获取了lock
index2线程获取到了cpu的资源,开始执行方法
uuid=v2
set(lock,uuid);
index1执行删除,此时会把index2的lock删除
index1 因为已经在方法中了,所以不需要重新上锁。index1有执行的权限。index1已经比较完成了,这个时候,开始执行
删除的index2的锁!
优化之LUA脚本保证删除的原子性
@GetMapping("testLockLua") public void testLockLua() { //1 声明一个uuid ,将做为一个value 放入我们的key所对应的值中 String uuid = UUID.randomUUID().toString(); //2 定义一个锁:lua 脚本可以使用同一把锁,来实现删除! String skuId = "25"; // 访问skuId 为25号的商品 100008348542 String locKey = "lock:" + skuId; // 锁住的是每个商品的数据 // 3 获取锁 Boolean lock = redisTemplate.opsForValue().setIfAbsent(locKey, uuid, 3, TimeUnit.SECONDS); // 第一种: lock 与过期时间中间不写任何的代码。 // redisTemplate.expire("lock",10, TimeUnit.SECONDS);//设置过期时间 // 如果true if (lock) { // 执行的业务逻辑开始 // 获取缓存中的num 数据 Object value = redisTemplate.opsForValue().get("num"); // 如果是空直接返回 if (StringUtils.isEmpty(value)) { return; } // 不是空 如果说在这出现了异常! 那么delete 就删除失败! 也就是说锁永远存在! int num = Integer.parseInt(value + ""); // 使num 每次+1 放入缓存 redisTemplate.opsForValue().set("num", String.valueOf(++num)); /*使用lua脚本来锁*/ // 定义lua 脚本 String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end"; // 使用redis执行lua执行 DefaultRedisScript<Long> redisScript = new DefaultRedisScript<>(); redisScript.setScriptText(script); // 设置一下返回值类型 为Long // 因为删除判断的时候,返回的0,给其封装为数据类型。如果不封装那么默认返回String 类型, // 那么返回字符串与0 会有发生错误。 redisScript.setResultType(Long.class); // 第一个要是script 脚本 ,第二个需要判断的key,第三个就是key所对应的值。 redisTemplate.execute(redisScript, Arrays.asList(locKey), uuid); } else { // 其他线程等待 try { // 睡眠 Thread.sleep(1000); // 睡醒了之后,调用方法。 testLockLua(); } catch (InterruptedException e) { e.printStackTrace(); } } }
Lua 脚本详解:
定义key,key应该是为每个sku定义的,也就是每个sku有一把锁。
String locKey ="lock:"+skuId; // 锁住的是每个商品的数据 Boolean lock = redisTemplate.opsForValue().setIfAbsent(locKey, uuid,3,TimeUnit.SECONDS);
加锁
使用lua释放锁
重试
为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件:
- 互斥性。在任意时刻,只有一个客户端能持有锁。
- 不会发生死锁。即使有一个客户端在持有锁的期间崩溃而没有主动解锁,也能保证后续其他客户端能加锁。
- 解铃还须系铃人。加锁和解锁必须是同一个客户端,客户端自己不能把别人加的锁给解了。
- 加锁和解锁必须具有原子性
到此,相信大家对“redis分布式锁如何优化”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。