温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python数据分析之堆叠数组函数怎么使用

发布时间:2023-02-24 10:04:21 来源:亿速云 阅读:96 作者:iii 栏目:开发技术

今天小编给大家分享一下Python数据分析之堆叠数组函数怎么使用的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。

numpy 堆叠数组

在做图像和 nlp 的数组数据处理的时候,经常需要实现两个数组堆叠或者连接的功能,这就需用到 numpy 库的一些函数,numpy 库中的常用堆叠数组函数如下:

  • stack : Join a sequence of arrays along a new axis.

  • hstack: Stack arrays in sequence horizontally (column wise).

  • vstack : Stack arrays in sequence vertically (row wise).

  • dstack : Stack arrays in sequence depth wise (along third axis).

  • concatenate : Join a sequence of arrays along an existing axis.

ravel() 函数

ravel() 方法可让将多维数组展平成一维数组。如果不指定任何参数,ravel() 将沿着行(第 0 维/轴)展平/拉平输入数组。

示例代码如下:

std_array = np.random.normal(3, 2.5, size=(2, 4))
array1d = std_array.ravel()
print(std_array)
print(array1d)

程序输出结果如下:

[[5.68301857 2.09696067 2.20833423 2.83964393]
 [2.38957339 9.66254303 1.58419716 2.82531094]]
 
[5.68301857 2.09696067 2.20833423 2.83964393 2.38957339 9.66254303 1.58419716 2.82531094]

stack() 函数

stack() 函数原型是 stack(arrays, axis=0, out=None),功能是沿着给定轴连接数组序列,轴默认为第0维。

1,参数解析:

  • arrays: 类似数组(数组、列表)的序列,这里的每个数组必须有相同的shape。

  • axis: 默认为整形数据,axis决定了沿着哪个维度stack输入数组。

2,返回:

  • stacked : ndarray 类型。The stacked array has one more dimension than the input arrays.

实例如下:

import numpy as np
# 一维数组进行stack
a1 = np.array([1, 3, 4])    # shape (3,)
b1 = np.array([4, 6, 7])    # shape (3,)
c1 = np.stack((a,b))
print(c1)
print(c1.shape)    # (2,3)
# 二维数组进行堆叠
a2 = np.array([[1, 3, 5], [5, 6, 9]])    # shape (2,3)
b2 = np.array([[1, 3, 5], [5, 6, 9]])    # shape (2,3)
c2 = np.stack((a2, b2), axis=0)
print(c2)
print(c2.shape)

输出为:

[[1 3 4] [4 6 7]]

(2, 3)

[[[1 3 5] [5 6 9]] [[1 3 5] [5 6 9]]] (2, 2, 3)

可以看到,进行 stack 的两个数组必须有相同的形状,同时,输出的结果的维度是比输入的数组都要多一维的。我们拿第一个例子来举例,两个含 3 个数的一维数组在第 0 维进行堆叠,其过程等价于先给两个数组增加一个第0维,变为1*3的数组,再在第 0 维进行 concatenate() 操作:

a = np.array([1, 3, 4])
b = np.array([4, 6, 7])
a = a[np.newaxis,:]
b = b[np.newaxis,:]
np.concatenate([a,b],axis=0)

输出为:

array([[1, 2, 3],       [2, 3, 4]])

vstack()函数

vstack函数原型是vstack(tup),功能是垂直的(按照行顺序)堆叠序列中的数组。tup是数组序列(元组、列表、数组),数组必须在所有轴上具有相同的shape,除了第一个轴。1-D arrays must have the same length.

# 一维数组
a = np.array([1, 2, 3])
b = np.array([2, 3, 4])
np.vstack((a,b))

array([[1, 2, 3], [2, 3, 4]])

# 二维数组
a = np.array([[1], [2], [3]])
b = np.array([[2], [3], [4]])
np.vstack((a,b))

array([[1], [2], [3], [2], [3], [4]])

hstack()函数

hstack()的函数原型:hstack(tup) ,参数tup可以是元组,列表,或者numpy数组,返回结果为numpy的数组。它其实就是**水平(按列顺序)**把数组给堆叠起来,与vstack()函数正好相反。举几个简单的例子:

# 一维数组
a = np.array([1, 2, 3])
b = np.array([2, 3, 4])
np.hstack((a,b))

array([1, 2, 3, 2, 3, 4])

# 二维数组
a = np.array([[1], [2], [3]])
b = np.array([[2], [3], [4]])
np.hstack((a,b))

array([[1, 2], [2, 3], [3, 4]])

vstack()和hstack函数对比:

这里的v是vertically的缩写,代表垂直(沿着行)堆叠数组,这里的h是horizontally的缩写,代表水平(沿着列)堆叠数组。 tup是数组序列(元组、列表、数组),数组必须在所有轴上具有相同的shape,除了第一个轴。

concatenate() 函数

concatenate()函数功能齐全,理论上可以实现上面三个函数的功能,concatenate()函数根据指定的维度,对一个元组、列表中的list或者ndarray进行连接,函数原型:

numpy.concatenate((a1, a2, ...), axis=0)
a = np.array([[1, 2], [3,4]])               
b = np.array([[5, 6], [7, 8]])
# a、b的shape为(2,2),连接第一维就变成(4,2),连接第二维就变成(2,4)
np.concatenate((a, b), axis=0)

array([[1, 2], [3, 4], [5, 6], [7, 8]])

注意:axis指定的维度(即拼接的维度)可以是不同的,但是axis之外的维度(其他维度)的长度必须是相同的。注意 concatenate 函数使用最广,必须在项目中熟练掌握。

以上就是“Python数据分析之堆叠数组函数怎么使用”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI